Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

10 Offbeat Predictions for Machine Learning in 2017

DZone's Guide to

10 Offbeat Predictions for Machine Learning in 2017

''The Age of Analytics'' is still in its infancy and there many exciting things to look forward to. In this post, Atakan Cetinsoy, VP of BigML, reveals what he believes Machine Learning has in store for us this year. Data lovers read on for an expert's offbeat outlook at what's coming to the ML ecosystem in 2017.

· Big Data Zone
Free Resource

Learn best practices according to DataOps. Download the free O'Reilly eBook on building a modern Big Data platform.

As each year wraps up, experts pull their crystal balls from their drawers and start peering into them for a glimpse of what’s to come. At BigML, we have been following such clairvoyant claims carefully this past holiday season to compare and contrast them with our own take on what 2017 will bring... and, our predictions may come across as quite unorthodox to some experts out there.

Enterprise Machine Learning Predictions Nobody is Talking About

For the TL;DR crowd, our crystal ball is showing us a cloudy (no pun intended) 2017 Machine Learning market forecast with some sunshine peeking through for good measure. To put it more directly, enterprises need to look beyond the AI hype for practical ways to incorporate Machine Learning into their operations. This starts with careful decision making when choosing an internal platform for your organization that will help build on smaller, low hanging fruit type projects that leverage their proprietary datasets. In due time, those projects add up to create positive feedback that ultimately not only introduces decision automation on the edges, but helps agile, machine learning teams transform their industries.

Jumping back to our regularly scheduled programming, let’s start with a quick synopsis of the road traveled so far:

Machine Learning Use Cases by Industry

  • But digesting, adopting, and profiting from 36 years of Machine Learning advancements and best practices has been a very bumpy ride for many businesses. And few have managed to navigate the path gracefully so far.
  • There are many “New Experts” that read a couple of books or take a few online classes and are suddenly in a position to “alter” things just because they have access to cheap capital. Meanwhile, many top technology companies have been “collecting” as much experienced Machine Learning talent as possible to get ready for the blossoming AI economy, while other businesses are at the mercy of Machine Learning-newbie investors and inexperienced recent graduates with unicorn ambitions. It is wishfully assumed that versatile, affordable, and scalable solutions will materialize out of these magical new ML algorithms.
  • In 2017, we suspect that the ecosystem is going to start converging around the right approach, albeit after otherwise avoidable roadkills.

Before we get to the specific predictions, we must note that 2016 was a special year because it presented us with the epiphany that the planet’s Top 5 most valuable companies are all techn companies for the first time in history. All five share the common traits of large-scale network effects, highly data-centric company cultures, and new economic value-added services built atop sophisticated analytics. What's more, they have been heavily publicizing their intent to make Machine Learning the fulcrum of their future evolution. With the addition of revenue-generating unicorns like Uber and Airbnb, the dominance of the tech sector is likely to continue in the coming years. This will benefit immensely from the large scale digitization of the world economy.

Changing of the Guard?

However, the trillion dollar question is: How can legacy companies (i.e. non-tech firms with rich data plus smaller tech companies that come from larger dissolved companies) counteract and become an integral part of the newly forming value chains... not just to be able to survive, but to thrive in the remainder of the decade? Today, these firms are stuck with rigid, rear-view-mirror business intelligence systems and archaic workstation-based traditional, statistical systems running simplistic regression models that fail to capture the complexity of many real-life, predictive use cases.

At the same time, they sit on growing heaps of hard to replicate proprietary datasets that go underutilized. The latest McKinsey Global Institute report named The Age of Analytics: Competing in a Data-Driven World reveals that less than 30% of the potential of modern analytics technologies outlined in their 2011 report has been realized — not even counting the new opportunities made possible by the advent of the same technologies in the last five years. To make matters worse, the progress looks very unbalanced across industries (i.e., as low as 10% in U.S. Healthcare vs. up to 60% in the case of Smartphones) at a time analytics prowess is correlated with competitive differentiation more than ever.

Machine Learning Industry Adoption

Even if it may be hidden behind polished marketing speak pushed by major vendors and research firms (e.g., “Cognitive Computing”, “Machine Intelligence”, or even doomsday-like “Smart Machines”), the Machine Learning genie is out of the bottle without a doubt as its wide-ranging potential across the enterprise has already made it part of the business lexicon. This new-found appetite for all things Machine Learning means many more legacy firms and startups will begin their Machine Learning journeys in 2017. The smart ones will separate themselves from the bunch by keeping their eyes open and learning from others’ mistakes. Nonetheless, some old bad habits are hard to kick cold turkey, so let’s first dive in with some gloomier predictions and plan to end on a higher note:

  • PREDICTION #1

    “Big Data” soul searching leads to the gates of #MachineLearning.

    Tweet: PREDICTION#1: “Big Data” soul searching leads to the gates of #MachineLearning. @BigMLcom https://ctt.ec/a1fa8+

The soul searching in the “Big Data” movement will continue as experts recognize the level of technical complexity that aspiring companies must navigate to piece together useful “Big Data” solutions that fit their needs. At the end of the day “Big Data” is tomorrow’s data but nothing else. The recent removal of the “Big Data” entry from the Gartner Hype Cycle is further testament to the same realization. All this will only hasten the pivot to analytics and specifically to Machine Learning as the center of attention so as to recoup the sunken costs from those projects via customer touching smart applications. Moreover, the much-maligned sampling remains a great tool to rapidly explore new predictive use cases that will support such applications.

Big Data vs. Machine Learning Trends

  • PREDICTION #2

    VCs investing in algorithm-based startups are in for a surprise.

    Tweet: PREDICTION #2: VCs investing in algorithm-based startups are in for a surprise. @BigMLcom https://ctt.ec/r3SnA+

Benedict Evans on Machine LearningThe education process of VCs will continue, albeit slowly and through hard lessons. They will keep investing in algorithm-based startups with marketable academic resumes while perpetuating myths and creating further confusion e.g., portraying Machine Learning as synonymous with Deep Learning, completely misrepresenting the differences between Machine Learning algorithms and Machine-learned models or model training and predicting from trained models1. A deeper understanding of the discipline with the proper historical perspective will remain elusive in the majority of the investment community that is on the look out for quick blockbuster hits. On a slightly more positive note, a small subset of the VC community seems to be waking up to the huge platform opportunity Machine Learning presents.

  • PREDICTION #3

    #MachineLearning talent arbitrage will continue at full speed.

    Tweet: PREDICTION #3: #MachineLearning talent arbitrage will continue at full speed. @BigMLcom https://ctt.ec/8Q43c+

The media frenzy around AI and Machine Learning will continue at full steam as humored by Rocket AI type parties, where young academics will be courted and ultimately funded by aforementioned investors. Ensuing portfolio companies will find it hard to compete on algorithms as few algorithms are really widely useful in practice although some do slightly better than other for very niche problems. Most will be cast as brides at shotgun weddings with corporate development teams looking to beef up on Machine Learning talent strictly for internal initiatives. In some nightmare scenarios, the acquirers will have no clear analytics charter, yet they will be in a frantic hunt to grab headlines to generate the illusion that they too are on the AI/Machine Learning bandwagon.

Machine Learning Talent Arbitrage

  • PREDICTION #4

    Top down #MachineLearning initiatives built on Powerpoint slides will end with a whimper.

    Tweet: PREDICTION #4: Top down #MachineLearning initiatives built on Powerpoint slides will end with a whimper. @BigMLcom https://ctt.ec/_I589+

Legacy company executives that opt for getting expensive help from consulting companies in forming their top-down analytics strategy and/or making complex “Big Data” technology components work together before doing their homework on low hanging predictive use cases will find that actionable insights and game-changing ROI will be hard to show. This is partially due to the requirement to have the right data architecture and flexible computing infrastructure already in place, but more importantly outperforming 36 years of collective achievements by the Machine Learning community with some novel approach is just a tall order regardless of how relatively cheap computing has become.

Top Down Data Science Consulting Fail

  • PREDICTION #5

    #DeepLearning commercial success stories will be few and far in between.

    Tweet: PREDICTION #5: #DeepLearning commercial success stories will be few and far in between. @BigMLcom https://ctt.ec/8f0ac+

Deep Learning’s notable research achievements such as the AlphaGo challenge will continue generating media interest. Nevertheless, its advances in certain practical use cases such as speech recognition and image understanding that will be the real drivers for it to find a proper spot in the enterprise Machine Learning toolbox alongside other proven techniques. Interpretability issues, death of experienced specialists, its reliance on very large labeled training datasets, and significant computational resource provisioning will limit mass corporate adoption in 2017. In its current form, think of it as the Polo of Machine Learning techniques—a fun time perhaps that will let you rub elbows with the rich and famous provided that you can afford a well-trained horse, the equestrian services and upkeep, the equipment, and a pricey club membership to go along with those. Nevertheless, it's not quite an Olympic sport. So, short of a significant research breakthrough in the unsupervised flavors of Deep Learning, most legacy companies experimenting with Deep Learning are likely to come to the conclusion that they can get better results faster if they pay more attention to areas like Reinforcement Learning and the bread and butter Machine Learning techniques such as ensembles.

Deep Learning Hype

  • PREDICTION #6

    Exploration of reasoning and planning under uncertainty will pave the way to new #MachineLearning heights.

    Tweet: PREDICTION #6: Exploration of reasoning and planning under uncertainty will pave the way to new #MachineLearning heights. @BigMLcom https://ctt.ec/1GAi3+

Of course, Machine Learning is only a small part of AI. More attention to research and the resulting applications from startups in the fields of reasoning and planning under uncertainty and not only learning will help cover truly new ground beyond the better understood pattern recognition. Not surprisingly, Facebook’s Mark Zuckerberg has reached similar conclusions in his assessment of the state of AI/Machine Learning after spending nearly a year to code his intelligent personal assistant “Jarvis”, that was loosely modeled after the same in the Iron Man series.

Mark Zuckerberg's Jarvis AI

  • PREDICTION #7

    Humans will still be central to decision-making despite further #MachineLearning adoption.

    Tweet: PREDICTION #7: Humans will still be central to decision making despite further #MachineLearning adoption. @BigMLcom https://ctt.ec/iBjl8+

Some businesses will see early spurts of faster and evidence-based decision making powered by Machine Learning, however, humans will still be central to the decision-making. Early examples of smart applications will emerge in certain industry pockets adding to the uneven distribution of capabilities due to differences in regulatory frameworks, innovation management approaches, competitive pressures, end customer sophistication, and demand for higher quality experiences as well as conflicting economic incentives in some value chains. Despite the talk about the upcoming singularity and robots taking over the world, cooler heads in the space point out that it will take a while to create truly intelligent systems. In the meanwhile, businesses will slowly learn to trust models and their predictions as they realize that algorithms can outperform humans in many tasks.

s. Machine Intelligence

  • PREDICTION #8

    Agile #MachineLearning will quietly take hold beneath the cacophony of AI marketing speak.

    Tweet: PREDICTION #8: Agile #MachineLearning will quietly take hold beneath the cacophony of AI marketing speak. @BigMLcom https://ctt.ec/5eO8B+

A more practical and agile approach to adopting Machine Learning will quietly take hold next year. Teams of doers not afraid to get their hands dirty with unruly yet promising corporate data will completely bypass the “Big Data” noise and carefully pick low-hanging predictive problems that they can solve with well-proven algorithms in the cloud using smaller sampled datasets that have a favorable signal to noise ratio. As they build confidence in their abilities, the desire to deploy what they have built in the actual product as well as to add more use cases will mount. No longer bound by data access issues and complex hard-to-deploy tools, these practitioners not only start improving their core operations but also start thinking about predictive use cases with higher risk-reward profiles that can serve as the enablers of brand new revenue streams.

Lean, Agile Data Science Stack

  • PREDICTION #9

    MLaaS platforms will emerge as the “AI-backbone” for enterprise #MachineLearning adoption by legacy companies.

    Tweet: PREDICTION #9: MLaaS platforms will emerge as the “AI-backbone” for enterprise #MachineLearning adoption by legacy companies. @BigMLcom https://ctt.ec/6RuU9+

    MLaaS platforms will emerge as the “AI Backbone” in accelerating the adoption of Agile Machine Learning practices. Consequently, commercial Machine Learning will get cheaper and cheaper thanks to a new wave of applications built on MLaaS infrastructure. Cloud Machine Learning platforms, in particular, will democratize Machine Learning by:
    • significantly lowering costs by eliminating complexity or front-loaded vendor contracts
    • offering pre-configured frameworks that package the most effective algorithms
    • abstracting the complexities of infrastructure setup and management from the end user
    • providing easy integration, workflow automation, and deployment options through REST APIs and bindings.

Machine Learning Platforms for Developers

  • PREDICTION #10

    Data Scientists or not, more developers will introduce #MachineLearning into their companies.

    Tweet: PREDICTION #10: Data Scientists or not, more Developers will introduce #MachineLearning into their companies. @BigMLcom https://ctt.ec/LCRKX+

This will be the year when developers start carrying the Machine Learning banner, easing the talent bottleneck for thousands of businesses that cannot compete with the Googles of the world in attracting top research scientists with over a decade of experience in AI/Machine Learning—which, by the way, doesn’t automagically translate to smart business applications that deliver business value. The developers will start rapidly building and scaling such applications on MLaaS platforms that abstract painful details (e.g., cluster configuration and administration, job queuing, monitoring and distribution, etc.) that are better kept underground in the plumbing. Developers just need a well-designed and well-documented API instead of knowing what a LR(1) Parser is to compile and execute their Java code or knowing what Information Gain or the Wilson Score are to be able to solve a predictive use case based on a decision tree.

Developer-driven Machine Learning

We are still in the early innings of “The Age of Analytics”, so there is much more to feel excited about vs. dwelling on bruises from past false starts. Here’s to keeping calm and carrying on with this exciting endeavor that will take businesses by storm, helping to perfect the alchemy between mathematics, software, and management best practices. Happy 2017 to you all!

1: The A16Z presenter seems to think every self-driving car has to learn what a stop sign is by itself, thus reinventing the wheel many times over instead of relying on tons of historical sensor data from an entire fleet of such vehicles. In reality, few Machine Learning use cases require a continuously trained algorithm e.g., handwriting recognition.

Find the perfect platform for a scalable self-service model to manage Big Data workloads in the Cloud. Download the free O'Reilly eBook to learn more.

Topics:
market ,analytics ,algorithms ,machine learning ,big data ,data science

Published at DZone with permission of Atakan Cetinsoy, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}