DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports
Events Video Library
Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
View Events Video Library
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

Integrating PostgreSQL Databases with ANF: Join this workshop to learn how to create a PostgreSQL server using Instaclustr’s managed service

Mobile Database Essentials: Assess data needs, storage requirements, and more when leveraging databases for cloud and edge applications.

Monitoring and Observability for LLMs: Datadog and Google Cloud discuss how to achieve optimal AI model performance.

Automated Testing: The latest on architecture, TDD, and the benefits of AI and low-code tools.

Related

  • MongoDB to Couchbase for Developers, Part 1: Architecture
  • MongoDB to Couchbase: An Introduction to Developers and Experts
  • Manage Hierarchical Data in MongoDB With Spring
  • Spring Data: Data Auditing Using JaVers and MongoDB

Trending

  • Podman Desktop Review
  • Building AI Applications With Java and Gradle
  • Generative AI: A New Tool in the Developer Toolbox
  • Database Monitoring: Key Metrics and Considerations
  1. DZone
  2. Data Engineering
  3. Databases
  4. 6 Rules of Thumb for MongoDB Schema Design: Part 1

6 Rules of Thumb for MongoDB Schema Design: Part 1

Francesca Krihely user avatar by
Francesca Krihely
·
Aug. 07, 14 · Interview
Like (4)
Save
Tweet
Share
37.34K Views

Join the DZone community and get the full member experience.

Join For Free

By William Zola, Lead Technical Support Engineer at MongoDB

“I have lots of experience with SQL, but I’m just a beginner with MongoDB. How do I model a one-to-N relationship?” This is one of the more common questions I get from users attending MongoDB office hours.

I don’t have a short answer to this question, because there isn’t just one way, there’s a whole rainbow’s worth of ways. MongoDB has a rich and nuanced vocabulary for expressing what, in SQL, gets flattened into the term “One-to-N”. Let me take you on a tour of your choices in modeling One-to-N relationships.

There’s so much to talk about here, I’m breaking this up into three parts. In this first part, I’ll talk about the three basic ways to model One-to-N relationships. In the second part I’ll cover more sophisticated schema designs, including denormalization and two-way referencing. And in the final part, I’ll review the entire rainbow of choices, and give you some suggestions for choosing among the thousands (really — thousands) of choices that you may consider when modeling a single One-to-N relationship.

Many beginners think that the only way to model “One-to-N” in MongoDB is to embed an array of sub-documents into the parent document, but that’s just not true. Just because you can embed a document, doesn’t mean you should embed a document.

When designing a MongoDB schema, you need to start with a question that you’d never consider when using SQL: what is the cardinality of the relationship? Put less formally: you need to characterize your “One-to-N” relationship with a bit more nuance: is it “one-to-few”, “one-to-many”, or “one-to-squillions”? Depending on which one it is, you’d use a different format to model the relationship.

Basics: Modeling One-to-Few

An example of “one-to-few” might be the addresses for a person. This is a good use case for embedding — you’d put the addresses in an array inside of your Person object:

> db.person.findOne()
{
  name: 'Kate Monster',
  ssn: '123-456-7890',
  addresses : [
     { street: '123 Sesame St', city: 'Anytown', cc: 'USA' },
     { street: '123 Avenue Q', city: 'New York', cc: 'USA' }
  ]
}

This design has all of the advantages and disadvantages of embedding. The main advantage is that you don’t have to perform a separate query to get the embedded details; the main disadvantage is that you have no way of accessing the embedded details as stand-alone entities.

For example, if you were modeling a task-tracking system, each Person would have a number of Tasks assigned to them. Embedding Tasks inside the Person document would make queries like “Show me all Tasks due tomorrow” much more difficult than they need to be. I will cover a more appropriate design for this use case in the next post.

Basics: One-to-Many

An example of “one-to-many” might be parts for a product in a replacement parts ordering system. Each product may have up to several hundred replacement parts, but never more than a couple thousand or so. (All of those different-sized bolts, washers, and gaskets add up.) This is a good use case for referencing — you’d put the ObjectIDs of the parts in an array in product document. (For these examples I’m using 2-byte ObjectIDs because they’re easier to read: real-world code would use 12-byte ObjectIDs.)

Each Part would have its own document:

> db.parts.findOne()
{
    _id : ObjectID('AAAA'),
    partno : '123-aff-456',
    name : '#4 grommet',
    qty: 94,
    cost: 0.94,
    price: 3.99
}

Each Product would have its own document, which would contain an array of ObjectID references to the Parts that make up that Product:

> db.products.findOne()
{
    name : 'left-handed smoke shifter',
    manufacturer : 'Acme Corp',
    catalog_number: 1234,
    parts : [     // array of references to Part documents
        ObjectID('AAAA'),    // reference to the #4 grommet above
        ObjectID('F17C'),    // reference to a different Part
        ObjectID('D2AA'),
        // etc
    ]

You would then use an application-level join to retrieve the parts for a particular product:

 // Fetch the Product document identified by this catalog number
> product = db.products.findOne({catalog_number: 1234});
   // Fetch all the Parts that are linked to this Product
> product_parts = db.parts.find({_id: { $in : product.parts } } ).toArray() ;

For efficient operation, you’d need to have an index on ‘products.catalog_number’. Note that there will always be an index on ‘parts._id’, so that query will always be efficient.

This style of referencing has a complementary set of advantages and disadvantages to embedding. Each Part is a stand-alone document, so it’s easy to search them and update them independently. One trade off for using this schema is having to perform a second query to get details about the Parts for a Product. (But hold that thought until we get to denormalizing in part 2.)

As an added bonus, this schema lets you have individual Parts used by multiple Products, so your One-to-N schema just became an N-to-N schema without any need for a join table!

Basics: One-to-Squillions

An example of “one-to-squillions” might be an event logging system that collects log messages for different machines. Any given host could generate enough messages to overflow the 16 MB document size, even if all you stored in the array was the ObjectID. This is the classic use case for “parent-referencing” — you’d have a document for the host, and then store the ObjectID of the host in the documents for the log messages.

> db.hosts.findOne()
{
    _id : ObjectID('AAAB'),
    name : 'goofy.example.com',
    ipaddr : '127.66.66.66'
}

>db.logmsg.findOne()
{
    time : ISODate("2014-03-28T09:42:41.382Z"),
    message : 'cpu is on fire!',
    host: ObjectID('AAAB')       // Reference to the Host document
}

You’d use a (slightly different) application-level join to find the most recent 5,000 messages for a host:

  // find the parent ‘host’ document
> host = db.hosts.findOne({ipaddr : '127.66.66.66'});  // assumes unique index
   // find the most recent 5000 log message documents linked to that host
> last_5k_msg = db.logmsg.find({host: host._id}).sort({time : -1}).limit(5000).toArray()

Recap

So, even at this basic level, there is more to think about when designing a MongoDB schema than when designing a comparable relational schema. You need to consider two factors:

  • Will the entities on the “N” side of the One-to-N ever need to stand alone?
  • What is the cardinality of the relationship: is it one-to-few; one-to-many; or one-to-squillions?

Based on these factors, you can pick one of the three basic One-to-N schema designs:

  • Embed the N side if the cardinality is one-to-few and there is no need to access the embedded object outside the context of the parent object
  • Use an array of references to the N-side objects if the cardinality is one-to-many or if the N-side objects should stand alone for any reasons
  • Use a reference to the One-side in the N-side objects if the cardinality is one-to-squillions

Next time we’ll see how to use two-way relationship and denormalizing to enhance the performance of these basic schemas.

Schema MongoDB Design Relational database Database Use case Document

Published at DZone with permission of Francesca Krihely, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Related

  • MongoDB to Couchbase for Developers, Part 1: Architecture
  • MongoDB to Couchbase: An Introduction to Developers and Experts
  • Manage Hierarchical Data in MongoDB With Spring
  • Spring Data: Data Auditing Using JaVers and MongoDB

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • support@dzone.com

Let's be friends: