DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
What's in store for DevOps in 2023? Hear from the experts in our "DZone 2023 Preview: DevOps Edition" on Fri, Jan 27!
Save your seat
  1. DZone
  2. Data Engineering
  3. Data
  4. A Beginner’s Guide to Embedded Data Analytics

A Beginner’s Guide to Embedded Data Analytics

The ability to offer embedded reporting within your existing app can provide a competitive edge. Here's what to consider before getting started with embedded analytics.

Eran Levy user avatar by
Eran Levy
·
Mar. 05, 18 · Opinion
Like (6)
Save
Tweet
Share
4.82K Views

Join the DZone community and get the full member experience.

Join For Free

Whether you're producing automation software, SaaS products, or cloud applications, it's likely to assume you're collecting a lot of data in the process.

Embedded analytics can bring a number of benefits to your organization, from a reduced total cost of ownership to freeing up time for your developers to focus on core elements of your product. With an increasing number of companies and individuals understanding the value of using data to improve different aspects of their business, the ability to offer embedded reporting within your existing application can give your product the competitive edge that it needs and greatly improve the value you offer to customers.

Here are four things to consider before getting started with embedded analytics.

1. In-House or Out-of-the-Box: Buy vs. Build

Once you've decided to add an embedded BI feature to your product, the first thing you'll want to consider is whether to buy existing embeddable software and integrate it in your own app or to develop an analytics platform in-house.

NB: A simple visual interface does not present a particular challenge in development terms. But it's important to note that business intelligence is about more than just displaying fancy visualizations on the user's screen. It handles joining multiple data sources, running fast queries on large datasets, and allowing users to explore their data by questioning it in a wide variety of ways.

This type of analytics platform is no cakewalk to develop. Building a robust BI system that can handle the demands of big or complex data would require immense resources (in terms of time and money) and might still fail to achieve the same level of functionality as an out of the box solution.

2. The Caveat: Ease of Implementation

Having said that, you also shouldn't overlook the possible hidden costs and time-sinks that come with some embedded solutions.

Problems with integration between your own software and the embedded analytics platform of your choice have the potential to greatly increase your costs and production time. This could mean prolonged periods that will have to be devoted to development and iterations between you and your BI provider.

Additionally, some BI software is so complex to implement and use that it will require extensive training on your end before the system is actually up and running, further extending your costs and time to market and proving to be a major headache on its own sake.

In other words, choosing external embedded BI will not necessarily guarantee you faster time to value. It's important to try the software out for yourself on your own data before making the decision.

3. Defining Your Requirements

There's a seemingly endless amount of BI products in the current marketplace, and to the untrained eye, they could all appear to be promising the same essential things.

However, closer inspection — which might actually require downloading a trial version of the software or requesting a proof of concept — will reveal substantial differences between the different types of software. For example, front-end tools such as data visualization software focus on dashboard reporting, whereas end-to-end tools also handle data preparation and have a built-in querying and analytics engine.

The type of tool you'll require depends, among others, on the volume, variety, and velocity of the data you plan to process. Things you need to consider include:

  • Size: How much data will you need to handle? Hundreds of megabytes? Gigabytes? Terabytes? Some BI tools' performance can suffer when handling large datasets.
  • Reporting: Will it be enough to generate a few pre-determined reports or will you want users to be able to generate custom queries and reports?
  • Security: Which permissions will you be able to set and how difficult will it be to do so? Can you set permissions on database, table, and row levels?
  • Data complexity: Is your data fairly organized and structured or are you dealing with complex data coming from multiple sources?

4. Don't Underestimate Your Future Needs

Even after thoroughly defining your exact plans for your embedded analytics, don't forget that business intelligence is, to a large extent, the realm of the uncertain. The amounts and types of data we collect today would have been incomprehensible a few years ago, and there's no reason to believe they will remain identical in a few years' time.

To avoid the need to repurchase, re-implement and retrain your staff when you discover the solution you've chosen can no longer fully satisfy your requirements, make sure that whichever embedded analytics platform you choose will be scalable. Assume your datasets will grow and your querying and reporting needs will also expand, and make sure that the software you integrate will be able to handle the larger workload.

Data visualization Analytics

Published at DZone with permission of Eran Levy, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Bye Bye, Regular Dev [Comic]
  • Better Performance and Security by Monitoring Logs, Metrics, and More
  • Top 10 Secure Coding Practices Every Developer Should Know
  • ChatGPT Prompts for Agile Practitioners

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: