DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
  1. DZone
  2. Data Engineering
  3. AI/ML
  4. Advanced ETL Functionality and Machine Learning Pre-Processing [Video]

Advanced ETL Functionality and Machine Learning Pre-Processing [Video]

Learn commonly used advanced ETL functionalities for machine learning-based outlier detection, feature generation, imputing missing values, and more!

Kathrin Melcher user avatar by
Kathrin Melcher
·
Oct. 17, 17 · Presentation
Like (1)
Save
Tweet
Share
4.71K Views

Join the DZone community and get the full member experience.

Join For Free

Today, we look at a dataset that supposedly is already clean, joined with the right additional information, and in the right shape — and we want to use it to train a prediction model. Unfortunately, a quick glance at the dataset reveals that it still has tons of missing values, it is not normalized, and it contains too many very similar features.

This means that any algorithm would have a really hard time to train a good prediction model on it. Most likely, it would produce a great candidate for a garbage-in/garbage-out type of model.

So, before we can start with the fun part and train the model, we need to run some pre-processing. Because we know that the quality of the model can be only as good as the quality of the input data.

To improve the quality of the dataset, we proceed with different pre-processing steps. We delete outliers, create new features from the raw data, impute missing values, reduce dimensionality, and much more, including a number of automatic and machine learning approaches. It is all described in the video below.

Summarizing, this video is an overview of the pre-processing techniques needed before training a model and of the native KNIME nodes suitable implement them.

Machine learning Extract, transform, load

Published at DZone with permission of Kathrin Melcher, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • How to Secure Your CI/CD Pipeline
  • Bye-Bye, Regular Dev [Comic]
  • Stream Processing vs. Batch Processing: What to Know
  • Top 5 Java REST API Frameworks

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: