Algorithms and Data Structures in JavaScript

DZone 's Guide to

Algorithms and Data Structures in JavaScript

In this post, a developer discusses a GitHub project he has created for furthering knowledge around JS algorithms and data structures.

· Web Dev Zone ·
Free Resource

Hello readers! I’ve recently launched a JavaScript Algorithms and Data Structures repository on GitHub with a collection of classic algorithms and data-structures implemented in ES6 JavaScript with explanations and links to further readings and YouTube videos. There is also Algorithms and Data Structures YouTube playlist that contains all the videos mentioned in that repository so you may just go and take this hand-made online learning course. 

So I guess you’ve already grasped the main idea of the project — helping developers to learn and practice algorithms and do it in JavaScript.

To make this process even smoother I’ve tried to put some graphical illustrations for each algorithm and data structure where it was possible just to make the idea behind those algorithms easy to grasp and memorize.

You also may find some practical information just in the root README file that may be handy while you’re studying. Such information as:

  • Big O notation graphs — to see quickly what is worse O(n!) or, let’s say, O(n²)
  • list of some of the most used Big O notations and their performance comparisons — to get the idea how big is 10! (it is 3628800)
  • data structures operations complexity — how fast are searches, reads or insertions for different data-structures
  • comparative table of sorting algorithms complexity — to help you choose proper sorting algorithm in your situation

Source: http://bigocheatsheet.com/

All code is 100% covered with tests. This is done not only to keep the code working correctly but also to give you an illustration of how each algorithm or data structure works, what basic operations they have (let’s say polling for heap) and what are the edge cases (what to do if the graph is directed).

The repository also has a playground. This is just small function template along with an empty test case that will help you to start testing or working on algorithms right after cloning the repo.

Currently, the following data structures are covered:

  • Linked List
  • Queue
  • Stack
  • Hash Table
  • Heap
  • Priority Queue
  • Trie
  • Tree (Binary Search Tree, AVL Tree)
  • Graph (both directed and undirected)
  • Disjoint Set

On top of these data structures, more than 50 popular algorithms are implemented. Among them are sorting, searching algorithms, and graph/tree/sets/string/math related algorithms. All algorithms are also categorized by their paradigms:

  • Brute Force Algorithms — looks at all the possibilities and selects the best solution.
  • Greedy Algorithms — choose the best option at the current time, without any consideration for the future.
  • Divide and Conquer Algorithms — divide the problem into smaller parts and then solve those parts.
  • Dynamic Programming Algorithms — build up to a solution using previously found sub-solutions.
  • Backtracking Algorithms — similarly to brute force, this tries to generate all possible solutions but each time you generate a solution test, it only continues generating subsequent solutions if it satisfies all conditions. Otherwise, backtrack and go on a different path to finding a solution.

The JavaScript Algorithms and Data Structures repository is still under active development and more algorithms and data-structures are yet to come. And you may also be a part of it by contributing your code and you implementations of web-known algorithms!

I hope this repository will be helpful for you! Enjoy coding!

algorithms and data structures, javascript, open source, web dev

Published at DZone with permission of Oleksii Trekhleb . See the original article here.

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}