Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Anomaly Detection With Deep Learning in R With H2O [Code Snippet]

DZone's Guide to

Anomaly Detection With Deep Learning in R With H2O [Code Snippet]

With this code snippet, you'll be able to download an ECG dataset from the internet and perform deep learning-based anomaly detection on it.

· AI Zone ·
Free Resource

Bias comes in a variety of forms, all of them potentially damaging to the efficacy of your ML algorithm. Read how Alegion's Chief Data Scientist discusses the source of most headlines about AI failures here.

The following R script downloads an ECG dataset (training and validation) from the internet and performs deep learning-based anomaly detection on it.

library(h2o)
h2o.init()
# Import ECG train and test data into the H2O cluster
train_ecg <- h2o.importFile(
 path = "http://h2o-public-test-data.s3.amazonaws.com/smalldata/anomaly/ecg_discord_train.csv", 
 header = FALSE, 
 sep = ",")
test_ecg <- h2o.importFile(
 path = "http://h2o-public-test-data.s3.amazonaws.com/smalldata/anomaly/ecg_discord_test.csv", 
 header = FALSE, 
 sep = ",")

# Train deep autoencoder learning model on "normal" 
# training data, y ignored 
anomaly_model <- h2o.deeplearning(
 x = names(train_ecg), 
 training_frame = train_ecg, 
 activation = "Tanh", 
 autoencoder = TRUE, 
 hidden = c(50,20,50), 
 sparse = TRUE,
 l1 = 1e-4, 
 epochs = 100)

# Compute reconstruction error with the Anomaly 
# detection app (MSE between output and input layers)
recon_error <- h2o.anomaly(anomaly_model, test_ecg)

# Pull reconstruction error data into R and 
# plot to find outliers (last 3 heartbeats)
recon_error <- as.data.frame(recon_error)
recon_error
plot.ts(recon_error)

# Note: Testing = Reconstructing the test dataset
test_recon <- h2o.predict(anomaly_model, test_ecg) 
head(test_recon)

h2o.saveModel(anomaly_model, "/Users/avkashchauhan/learn/tmp/anomaly_model.bin")
h2o.download_pojo(anomaly_model, "/Users/avkashchauhan/learn/tmp/", get_jar = TRUE)

h2o.shutdown(prompt= FALSE)

 That's it — enjoy!

Your machine learning project needs enormous amounts of training data to get to a production-ready confidence level. Get a checklist approach to assembling the combination of technology, workforce and project management skills you’ll need to prepare your own training data.

Topics:
ai ,r ,deep learning ,h2o ,anomaly detection

Published at DZone with permission of

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}