DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones AWS Cloud
by AWS Developer Relations
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones
AWS Cloud
by AWS Developer Relations
Securing Your Software Supply Chain with JFrog and Azure
Register Today

Trending

  • How To Use Pandas and Matplotlib To Perform EDA In Python
  • Using Render Log Streams to Log to Papertrail
  • Chaining API Requests With API Gateway
  • Automating the Migration From JS to TS for the ZK Framework

Trending

  • How To Use Pandas and Matplotlib To Perform EDA In Python
  • Using Render Log Streams to Log to Papertrail
  • Chaining API Requests With API Gateway
  • Automating the Migration From JS to TS for the ZK Framework
  1. DZone
  2. Data Engineering
  3. Data
  4. Apache Flink: The Next Gen Big Data Analytics Framework

Apache Flink: The Next Gen Big Data Analytics Framework

Apache Flink is the next big thing in data processing. Although it may look like Spark at first glance, there are many differences between the two. Check it out!

Sibanjan Das user avatar by
Sibanjan Das
CORE ·
Dec. 20, 16 · Opinion
Like (12)
Save
Tweet
Share
21.22K Views

Join the DZone community and get the full member experience.

Join For Free

Apache Flink is an Apache project for Big Data processing. Although it looks like Apache Spark, there are a lot of differences in both their architecture and ideas. The defining hallmark of Apache Flink is the ability to process streaming data in real time. Apache Spark is considered to be the pioneer in real-time processing with proven capabilities, but its micro-batching architecture supports a Near Real Time (NRT) scenario — Apache Flink is simply real time.

The primitive concept of Apache Flink is the high-throughput and low-latency stream processing framework which also supports batch processing. The architecture is a flip of the other Big Data processing architectures where the primary notion was the batch processing framework. This is something that organizations have been looking for over the last decade. There is a need for platforms supporting low latency data movement for applications where even a millisecond delay can lead to severe consequences. The prospect of Apache Flink seems to be significant and looks like the goal for stream processing. 

“I would consider stream data analysis to be a major unique selling proposition for Flink. Due to its pipelined architecture Flink is a perfect match for big data stream processing in the Apache stack.”  Volker Markl, Professor and Chair of the Database Systems and Information Management group at the Technische Universität Berlin.

The core of Apache Flink is the Runtime as shown in the architecture diagram below. We can also tell it is the Kernel of Flink which is a distributed streaming dataflow engine that provides fault tolerant data distribution and communication. The streaming dataflow engine interprets every program as a dataflow graph.

Image title

                                                     Image Credits: https://flink.apache.org/


Some of the features of the Core of Flink are:

  • Executes everything as a stream and processes data row after row in real time.
  • Supports iterative execution and follows a distributed data flow approach which is crucial to realize the promise of Big Data.
  • The engine is versatile and allows execution of existing MapReduce or Storm applications.
  • It has a cost based optimizer for both Stream and Batch processes.
  • The memory management is optimized and managed automatically by the engine.

On the top of the Core, we have DataStream API for Stream processing and DataSet API for batch processing. There are also specific API and Libraries over the DatasStream and DataSet API's described below:

  • Table API enables the usage of SQL queries over the data. They are be easily embedded on both the DataStream and DataSets API's and supports the usage of relational operators like selection, aggregations, and joins.
  • Flink ML can be used for performing machine learning tasks over the DataSet API. It enables users to write ML pipelines which make it easier to handle the machine learning workflow. ML pipelines bind the different steps of an ML flow together making it efficient to prepare and deploy the models in a production environment.
  • Gelly for graph processing. It provides set of operators to create and modify graphs. A graph is represented by a DataSet of edges and DataSet of vertices. Gelly is only available for DataSet API and can only be used for batch processing.
  • Flink CEP is the complex event processing library for Flink. It allows you to quickly detect complex event patterns in a stream of endless data. Flink CEP is only available for stream processing over DataStream API.

Here are some key differences as told by Von Hans-Peter Zorn Und Jasir El-Sobhy:

  • Stream Processing: While Spark is a batch-oriented system that operates on chunks of data, called RDDs, Apache Flink is a stream processing system able to process row after row in real time.
  • Iterations: By exploiting its streaming architecture, Flink allows you to iterate over data natively, something Spark also supports only as batches.
  • Memory Management: Spark jobs have to be optimized and adapted to specific datasets because you need to manually control partitioning and caching if you want to get it right.
  • Maturity: Flink is still in its infancy and has but a few production deployments.
  • Data Flow: In contrast to the procedural programming paradigm Flink follows a distributed data flow approach. For data set operations where intermediate results are required in addition to the regular input of a transaction, broadcast variables are used to distribute the pre-calculated results to all worker nodes.

Apache Flink is not as familiar as Apache Spark as it is relatively new and production deployments are scanty. However, it is viewed as 4g of Big Data Analytics framework, and the reason is described in this excellent presentation by Slim Baltagi, Director of Big Data Engineering, Capital One.

Big data Apache Flink Stream processing Machine learning Framework Database Apache Spark Analytics API Relational database

Opinions expressed by DZone contributors are their own.

Trending

  • How To Use Pandas and Matplotlib To Perform EDA In Python
  • Using Render Log Streams to Log to Papertrail
  • Chaining API Requests With API Gateway
  • Automating the Migration From JS to TS for the ZK Framework

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com

Let's be friends: