Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Association & Concordance Measures with R

DZone's Guide to

Association & Concordance Measures with R

· Big Data Zone ·
Free Resource

Hortonworks Sandbox for HDP and HDF is your chance to get started on learning, developing, testing and trying out new features. Each download comes preconfigured with interactive tutorials, sample data and developments from the Apache community.

In order to define assocation measures or concordance measures, define a concordance function as follows:

Let http://freakonometrics.blog.free.fr/public/perso6/conc-28.gif be a random pair with copula http://freakonometrics.blog.free.fr/public/perso6/conc-27.gif, and http://freakonometrics.blog.free.fr/public/perso6/conc-29.gif with copula http://freakonometrics.blog.free.fr/public/perso6/conc-26.gif. Then define

http://freakonometrics.blog.free.fr/public/perso6/cibc-25.gif

the so-called concordance function. Thus

http://freakonometrics.blog.free.fr/public/perso6/conc-23.gif

As proved last week,

http://freakonometrics.blog.free.fr/public/perso6/conc-24.gif

Based on that function, several concordance measures can be derived. A popular measure is Kendall's tau, from Kendall (1938), defined as http://freakonometrics.blog.free.fr/public/perso6/conc-22.gif i.e.

 http://freakonometrics.blog.free.fr/public/perso6/conc-21.gif

which is simply http://freakonometrics.blog.free.fr/public/perso6/conc-20.gif.

Here, computation can be tricky. Consider the following sample:

set.seed(1)
> n=40
> library(mnormt)
> X=rmnorm(n,c(0,0),
+ matrix(c(1,.4,.4,1),2,2))
> U=cbind(rank(X[,1]),rank(X[,2]))/(n+1)

Then, using R function, we can obtain Kendall's tau easily,

> cor(X,method="kendall")[1,2]
[1] 0.3794872

To get our own code (and to understand a bit more how to get that coefficient), we can use

> i=rep(1:(n-1),(n-1):1)
> j=2:n
> for(k in 3:n){j=c(j,k:n)}
> M=cbind(X[i,],X[j,])
> concordant=sum((M[,1]-M[,3])*(M[,2]-M[,4])>0)
> discordant=sum((M[,1]-M[,3])*(M[,2]-M[,4])<0)
> total=n*(n-1)/2
> (K=(concordant-discordant)/total)
[1] 0.3794872

or the following (we'll use random variable http://freakonometrics.blog.free.fr/public/perso6/conc-30.gif quite frequently),

> i=rep(1:n,each=n)
> j=rep(1:n,n)
> Z=((X[i,1]>X[j,1])&(X[i,2]>X[j,2]))
> (K=4*mean(Z)*n/(n-1)-1)
[1] 0.3794872

Another measure is Spearman's rank correlation, from Spearman (1904),

http://freakonometrics.blog.free.fr/public/perso6/conc-05.gif

where http://freakonometrics.blog.free.fr/public/perso6/conc-19.gif has distribution http://freakonometrics.blog.free.fr/public/perso6/conc-17.gif.

Here, http://freakonometrics.blog.free.fr/public/perso6/conc-07.gif which leads to the following expressions

http://freakonometrics.blog.free.fr/public/perso6/conc-06.gif

Numerically, we have the following

> cor(X,method="spearman")[1,2]
[1] 0.5388368
> cor(rank(X[,1]),rank(X[,2]))
[1] 0.5388368

Note that it is also possible to write

http://freakonometrics.blog.free.fr/public/perso6/conc-04.gif

Another measure is the cograduation index, from Gini (1914), obtained by sybstituting an L1 norm instead of a L2 one in the previous expression,

http://freakonometrics.blog.free.fr/public/perso6/concord-01.gif

Note that this index can also be defined as http://freakonometrics.blog.free.fr/public/perso6/concor-02.gif. Here,

> Rx=rank(X[,1]);Ry=rank(X[,2]);
> (G=2/(n^2) *(sum(abs(Rx+Ry-n-1))-
+ sum(abs(Rx-Ry))))
[1] 0.41

Finally, another measure is the one from Blomqvist (1950). Let http://freakonometrics.blog.free.fr/public/perso6/conc-10.gif denote the median of http://freakonometrics.blog.free.fr/public/perso6/conc-12.gif, i.e.

http://freakonometrics.blog.free.fr/public/perso6/conc-15.gif

Then define

http://freakonometrics.blog.free.fr/public/perso6/conc-09.gif

or equivalently

http://freakonometrics.blog.free.fr/public/perso6/conc-08.gif

> Mx=median(X[,1]);My=median(X[,2])
> (B=4*sum((X[,1]<=Mx)*((X[,2]<=My)))/n-1)
[1] 0.4

Hortonworks Community Connection (HCC) is an online collaboration destination for developers, DevOps, customers and partners to get answers to questions, collaborate on technical articles and share code examples from GitHub.  Join the discussion.

Topics:

Published at DZone with permission of

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}