Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Beta Inequalities in R

DZone's Guide to

Beta Inequalities in R

· Big Data Zone ·
Free Resource

The open source HPCC Systems platform is a proven, easy to use solution for managing data at scale. Visit our Easy Guide to learn more about this completely free platform, test drive some code in the online Playground, and get started today.

Someone asked me yesterday for R code to compute the probability P(X > Y + δ) where X and Y are independent beta random variables. I’m posting the solution here in case it benefits anyone else.

For an example of why you might want to compute this probability, see A Bayesian view of Amazon resellers.

Let X be a Beta(a, b) random variable and Y be a Beta(c, d) random variable. Denote PDFs by f and CDFs by F. Then the probability we need is

P(X > Y + \delta) &=& \int_\delta^1 \int_0^{x-\delta} f_X(x) \, f_Y(y)\, dy\,dx \\ &=& \int_\delta^1 f_X(x)\, F_Y(x-\delta) \, dx

If you just need to compute this probability a few times, here is a desktop application to compute random inequalities.

But if you need to do this computation repeated inside R code, you could use the following.

beta.ineq <- function(a, b, c, d, delta)
{
    integrand <- function(x) { dbeta(x, a, b)*pbeta(x-delta, c, d) }
    integrate(integrand, delta, 1, rel.tol=1e-4)$value
}

The code is as good or as bad as R’s integrate function. It’s probably accurate enough as long as none of the parameters a, b, c, or d are near zero. When one or more of these parameters is small, the integral is harder to compute numerically.

There is no error checking in the code above. A more robust version would verify that all parameters are positive and that delta is less than 1.

Here’s the solution to the corresponding problem for gamma random variables, provided delta is zero: A support one-liner.

And here is a series of blog posts on random inequalities.

Introduction
Analytical results
Numerical results
Cauchy distributions
Beta distributions
Gamma distributions
Three or more random variables
Folded normals

 

 

 

Managing data at scale doesn’t have to be hard. Find out how the completely free, open source HPCC Systems platform makes it easier to update, easier to program, easier to integrate data, and easier to manage clusters. Download and get started today.

Topics:

Published at DZone with permission of

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}