DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones AWS Cloud
by AWS Developer Relations
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones
AWS Cloud
by AWS Developer Relations
  1. DZone
  2. Coding
  3. Java
  4. C++ or Java, which is faster for high frequency trading?

C++ or Java, which is faster for high frequency trading?

Peter Lawrey user avatar by
Peter Lawrey
·
Aug. 04, 11 · Interview
Like (0)
Save
Tweet
Share
10.88K Views

Join the DZone community and get the full member experience.

Join For Free

There are conflicting views as to what is the best solution for high frequency trading. Part of the problem is that what is high frequency trading varies more than you might expect, another part is what is meant by faster.

My View

If you have a typical Java programmer and typical C++ programmer, each with a few years experience writing a typical Object Oriented Program, and you give them the same amount of time, the Java programmer is likely to have a working program earlier and will have more time to tweak the application. In this situation it is likely the Java application will be faster. IMHO.

In my experience, Java performs better at C++ at detecting code which doesn't need to be done. esp micro-benchmarks which don't do anything useful. ;) If you tune Java and C++ as far as they can go given any amount of expertise and time, the C++ program will be faster. However, given limited resources and in changing environment a dynamic language will out perform. i.e. in real world applications.

In the equities space latency you need latencies sub-10 us to be seriously high frequency. Java and even standard OOP C++ on commodity hardware is not an option. You need C or a cut down version of C++ and specialist hardware like FPGAs, GPUs.

In FX, high frequency means a latencies of sub-100 us. In this space C++ or a cut down Java (low GC) with kernel bypass network adapter is an option. In this space, using one language or another will have pluses and minuses. Personally, I think Java gives more flexibility as the exchanges are constantly changing, assuming you believe you can use IT for competitive advantage.

In many cases, when people talk about high frequency, esp Banks, they are talking sub 1 ms or single digit ms. In this space, I would say the flexibility/dynamic programming of Java, Scala or C# etc would give you time to market, maintainability and reliability advantages over C/C++ or FPGA.

The problem Java faces

The problem is not in the language as such, but a lack of control over caches, context switches and interrupts. If you copy a block of memory, something which occurs in native memory, but using a different delay between runs, that copy gets slower depending on what has happened between copies.

The problem is not GC, or Java as neither of these play much of a part. The problem is that part of the cache has been swapped out and the copy itself takes longer. This is the same for any operation which accesses memory. e.g. accessing plain objects will also be slower.

private void doTest(Pauser delay) throws InterruptedException {
    int[] times = new int[1000 * 1000];
    byte[] bytes = new byte[32* 1024];
    byte[] bytes2 = new byte[32 * 1024];
    long end = System.nanoTime() + (long) 5e9;
    int i;
    for (i = 0; i < times.length; i++) {
        long start = System.nanoTime();
        System.arraycopy(bytes, 0, bytes2, 0, bytes.length);
        long time = System.nanoTime() - start;
        times[i] = (int) time;
        delay.pause();
        if (start > end) break;
    }
    Arrays.sort(times, 0, i);
    System.out.printf(delay + ": Copy memory latency 1/50/99%%tile %.1f/%.1f/%.1f us%n",
            times[i / 100] / 1e3,
            times[i / 2] / 1e3,
            times[i - i / 100 - 1] / 1e3
    );
}
The test does the same thing many times, with different delays between performing that test. The test spends most of its time in native methods and no objects are created or discarded as during the test.
YIELD: Copy memory latency 1/50/99%tile 1.6/1.6/2.3 us
NO_WAIT: Copy memory latency 1/50/99%tile 1.6/1.6/1.6 us
BUSY_WAIT_10: Copy memory latency 1/50/99%tile 3.1/3.5/4.4 us
BUSY_WAIT_3: Copy memory latency 1/50/99%tile 2.7/3.0/4.0 us
BUSY_WAIT_1: Copy memory latency 1/50/99%tile 1.6/1.6/2.6 us
SLEEP_10: Copy memory latency 1/50/99%tile 2.3/3.7/5.2 us
SLEEP_3: Copy memory latency 1/50/99%tile 2.7/4.4/4.8 us
SLEEP_1: Copy memory latency 1/50/99%tile 2.8/4.6/5.0 us
The typical time (the middle value) it takes to perform the memory copy varies between 1.6 and 4.6 us depending on whether there was a busy wait or sleep for 1 to 10 ms. This is a ratio of about 3x which has nothing to do with Java, but something it has no real control over. Even the best times vary by about 2x.

The code

ThreadlatencyTest.java

Conclusion

In ultra-high frequency, the core engine will be more C, assembly and custom hardware than OOP C++ or Java. In markets where the latency requirements of the engine are less tight C++ and Low GC Java become an option. As latency requirement become less tight, Java and other dynamic languages can be more productive. In this situation, Java is faster to market so you can take advantages of changes in the market/requirements.

 

From http://vanillajava.blogspot.com/2011/07/c-or-java-which-is-faster-for-high.html

Java (programming language)

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Spring Boot vs Eclipse MicroProfile: Resident Set Size (RSS) and Time to First Request (TFR) Comparative
  • Cloud Performance Engineering
  • gRPC on the Client Side
  • Building a Real-Time App With Spring Boot, Cassandra, Pulsar, React, and Hilla

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: