Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Cars Begin to Enter the Age of Predictive Motoring

DZone's Guide to

Cars Begin to Enter the Age of Predictive Motoring

While driving, how many times have you observed another driver and could predict what they were going to do in the next few seconds? Very soon your car will be predicting what you (the driver) will do next. It will make us all safer.

· IoT Zone
Free Resource

Discover why Bluetooth mesh is the next evolution of IoT solutions. Download the mesh overview.

I wrote recently about developments in augmented windscreens that researchers believe will eventually lead to predictive capabilities being provided to drivers.

These capabilities have been explored by a German team called UR:BAN, who are working to better understand the complex behaviors of all road users so that they can better predict how they will behave.

Recent studies suggest that such systems will soon be able to predict what the driver will do up to three seconds before they actually do it.

We already have a glimpse of this future with the array of driver assistance technologies that are fitted in the latest models.  Alongside the German team, a group of researchers from Cornell University are also working on developing predictive capabilities for our vehicles.

Predictive Motoring

They are building a comprehensive database of our behaviors when we drive to try and understand the various trigger movements that signify that a particular behavior is about to be undertaken.

They are combining this behavioral science with things like GPS and street map information, vehicle speed and so on, to present an accurate prediction about what the driver might do.

The challenge is to bring all of these disparate data sources together so that they allow for quick and effective predictions to be made.

To do this, the team use AI to crunch the data and look out for the key, telltale signs that something important is about to happen.

Training the Machine

They trained the algorithm by first of all videoing drivers, with one camera monitoring their actions, and another trained on the road ahead.

With data from 10 different drivers and over 1,000 miles of driving over a two month period, the researchers set about annotating the data by hand to label what maneuvers were taking place in the vehicle.

This process identified 700 unique events, such as lane changes, turns and even carrying on in a straight line.

This was then used to train the algorithms to be able to accurately detect the circumstances whereby the driver will make turns or change lanes.

After a period of training, the algorithms were able to do this with an accuracy of around 90%.  It was able to make these accurate predictions roughly 3.5 seconds before the action actually occurred.

Next Steps

Suffice to say, the algorithm was only on the hunt for a relatively limited range of behaviors over a relatively limited timescale.  More work is needed, for instance, on coping with hazardous driving conditions or during challenging situations where visibility may be low.

These are the kind of situations where accidents are most likely, and therefore, where predictive capabilities will be most valuable in averting them.

So, whilst the development is a good indicator of the potential for this kind of predictive technology, there is still a lot of work to be done before it begins to be offered in the marketplace.

As vehicles become increasingly automated however, this is certainly an interesting area of exploration and one to keep a firm eye on.

Take a deep dive into Bluetooth mesh. Read the tech overview and discover new IoT innovations.

Topics:
automotive news ,ai ,predictive analytics

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}