Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Clusters of (French) Regions

DZone's Guide to

Clusters of (French) Regions

Here's a neat data science example with functions that show cluster analysic with data from the 2012 French elections.

· Big Data Zone
Free Resource

Learn best practices according to DataOps. Download the free O'Reilly eBook on building a modern Big Data platform.

For the data science course tomorrow, I just wanted to post some functions to illustrate cluster analysis. Consider the dataset of the French 2012 elections:

> elections2012=read.table(
"http://freakonometrics.free.fr/elections_2012_T1.csv",sep=";",dec=",",header=TRUE)
> voix=which(substr(names(
+ elections2012),1,11)=="X..Voix.Exp")
> elections2012=elections2012[1:96,]
> X=as.matrix(elections2012[,voix])
> colnames(X)=c("JOLY","LE PEN","SARKOZY","MÉLENCHON","POUTOU","ARTHAUD","CHEMINADE","BAYROU","DUPONT-AIGNAN","HOLLANDE")
> rownames(X)=elections2012[,1]
> cah=hclust(dist(X))
> plot(cah,cex=.6)

To get five groups, we have to prune the tree

> rect.hclust(cah,k=5)
> groups.5 <- cutree(cah,5)

We have to zoom-in to visualize the French regions,

It is also possible to use

> library(dendroextras)
> plot(colour_clusters(cah,k=5))

And again, if we zoom in, we get

The interpretation of the clusters can be obtained using

> aggregate(X,list(groups.5),mean)
 Group.1 JOLY LE PEN SARKOZY
1 1 2.185000 18.00042 28.74042
2 2 1.943824 23.22324 25.78029
3 3 2.240667 15.34267 23.45933
4 4 2.620000 21.90600 34.32200
5 5 3.140000 9.05000 33.80000

It is also possible to visualize those clusters on a map, using

> library(RColorBrewer)
> CL=brewer.pal(8,"Set3")
> carte_classe <- function(groupes){
+ library(stringr)
+ elections2012$dep <- elections2012[,2]
+ elections2012$dep <- tolower(elections2012$dep)
+ elections2012$dep <- str_replace_all(elections2012$dep, pattern = " |-|'|/", replacement = "")
+ library(maps)
+ france<-map(database="france")
+ france$dep <- france$names
+ france$dep <- tolower(france$dep)
+ france$dep <- str_replace_all(france$dep, pattern = " |-|'|/", replacement = "")
+ corresp_noms <- elections2012[, c(1,2, ncol(elections2012))]
+ corresp_noms$dep[which(corresp_noms$dep %in% "corsesud")] <- "corsedusud"
+ col2001<-groupes+1
+ names(col2001) <- corresp_noms$dep[match(names(col2001), corresp_noms[,1])]
+ color <- col2001[match(france$dep, names(col2001))]
+ map(database="france", fill=TRUE, col=CL[color])
+ }
> carte_classe(cutree(cah,5))

or, if we simply want 4 clusters

> carte_classe(cutree(cah,4))

Find the perfect platform for a scalable self-service model to manage Big Data workloads in the Cloud. Download the free O'Reilly eBook to learn more.

Topics:
data science ,presidential elections ,visualization

Published at DZone with permission of Arthur Charpentier, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}