By design, documents in Couchbase Server are partitioned into vBuckets
(or partitions). There are multiple files used for storage – a data file
per partition (the “data files”), multiple index-files (active, replica
and temp) per design document and a master file that has metadata
related to the design documents and view definitions. For example on Mac
OSX (as shown below), the sample ‘gamesim’ bucket has
64 individual data files,
one per partition (0.couch.1 to 63.couch.1), and a master file that has
design documents and other view metadata (master.couch.1)
Couchbase Data and Master File
The index files are
in the @indexes folder and consist of the active index file starting
with main_, the replica index file (if index replication is enabled)
starting with replica_ and a temporary file that is used while building
and updating the index starting with tmp_.

Index Files in Couchbase Server
Data and index files
in Couchbase Server are organized as b-trees. The root nodes (shown in
red) contains pointers to the intermediate nodes, which contain
pointers to the leaf nodes (shown in blue). In the case of data files,
the root and intermediate nodes track the sizes of documents under their
sub-tree. The leaf nodes store the document id, document metadata and
pointers to the document content. For index files, the root and
intermediate nodes track the outputted map-function result and the
reduce values under their subtree.

B-tree storage for data files (shown on the left) and index files (shown on the right)
All mutations including inserts, updates and deletes are written to
the end of the file leaving old data in place. Add a new document? The
b-tree grows at the end. Delete a document? That gets recorded at the
end of the b-tree. For example, as shown in the Figure below, document A
is mutated followed by a mutation to document B and then a new document
D is added followed by another mutation to document A. Old data is
shown by the red crossed-out nodes in the Figure below.

Logical data layout for data and index files
By examining the size of the documents tracked by the root node in the
b-tree file structure, the ratio of the actual size to the current size
of the file is calculated. If this ratio hits a certain threshold that
is configurable as shown in the Figure below, an online compaction
process is triggered. Compaction scans through the current data and
index files and creates new data and index files, without the items
marked for cleanup. During compaction, the b-trees are balanced and the
reduce values are re-computed for the new tree. Additionally, data that
does not belong to a particular node is also cleaned up.
Finally to catch-up with the active workload that might have changed
the old partition data file during compaction, Couchbase copies over the
data that was appended since the start of the compaction process to the
new partition data file so that it is up-to date. The new index file is
also updated in this manner. The old partition data and index file are
then deleted and the new data and index files are used.
Normally, compaction is an all-or-nothing operation but since compaction in Couchbase is on a per partition (vbucket) basis, the dataset can be compacted incrementally without losing any changes it has made when aborted.

Configuring the compaction thresholds in the settings UI tab for data and index files
Compaction in Couchbase Server is an online operation.
By default, auto-compaction kicks in when the fragmentation threshold
reaches 30%, but you should test what settings works well for your
workload and tune this setting accordingly.

Because compaction is a resource intensive you can
also schedule it during off-peak hours. To prevent auto compaction from
taking place when your database is in heavy use, you can configure an
off-peak time period during which compaction is allowed using the UI
shown above. For example, here I’ve set compaction to run between 12am
and 1am server time every day. If the compaction operation does not
complete in this time period, it will continue, but you can check the
box to have it aborted.
Compaction can also be triggered manually per bucket or per design document as shown in the Figures below.

Manually compacting a data bucket in Couchbase

Manually compacting a design document in Couchbase
Compaction performance in Couchbase Server depends on IO capacity and
proper cluster sizing.
Your cluster must be properly sized so that there is enough capacity in
all the various areas to support everything else the system is doing to
maintain the required level of performance.
So, how do you tune compaction in Couchbase Server?
There is no magic bullet here ... Depending on your application’s IOPS
requirement, you need to size your cluster properly and might want to
test your workload across a variety of different storage hardware. If
your app is write heavy, SSD’s might be the best option but for heavy
read ratios, EBS might be a good solution at a low cost.
By default, if both data and view indexes are configured for
auto-compaction, compaction operates sequentially, first on the database
and then on the views. By enabling parallel compaction, both the
databases and views can be compacted at the same time. This requires
more CPU and disk I/O, but if the database and view indexes are stored
on different physical disk devices (
as is our best practice anyway), the two can complete in parallel so that the index and data files does not grow extremely large.
Conclusion
At the end of the day, every database needs regular maintenance.
Online compaction is a huge plus but you have to test your system and
configure your compaction settings appropriately so that it does not
affect your system load.
Comments