Over a million developers have joined DZone.

Connecting Redis to Solr For Boosting Documents

DZone's Guide to

Connecting Redis to Solr For Boosting Documents

· Java Zone ·
Free Resource

Get the Edge with a Professional Java IDE. 30-day free trial.

There are a number of instances in Solr where it's desirable to retrieve data from an external datastore for boosting purposes instead of trying to contort Solr with multiple queries, joins etc.

Here's a trivial example:

Jobs are stored as documents in Solr. Users of the application can rank a job from 1-10. We need to boost each job with the user's rank if it exists.

Now, to try to attempt to model this fully in Solr would be fairly inefficient, especially for large # of jobs and/or users, since each time a user ranks a job, the searcher has to reload in order for that data to be available for searching.

A much more efficient method of implementing this, is by storing the rank data in a nosql store like Redis, and retrieving the rank at query-time, using it to boost the documents accordingly.

This can be accomplished using a custom FunctionQuery. I've blogged about how to create custom function queries in Solr before, so this is simply an application of the subject.

Here's the code:

public class RedisValueSourceParser extends ValueSourceParser {
  @Override public ValueSource parse(FunctionQParser fp) throws ParseException {
    String dataType = fp.parseArg(); // either z (sortedset) or h (hash)
    if (!dataType.equalsIgnoreCase("z") && !dataType.equalsIgnoreCase("h")) {
      throw new ParseException("Expecting first arg to be either z (sortedset) or h (hash)");
    String redisKey = fp.parseArg();
    String field = fp.parseArg();
    return new RedisValueSource(dataType, redisKey, field);

This FunctionQuery accepts 3 arguments:
1. dataType, either a Redis sortedset or hash
2. the key to the Redis collection
3. the field to use as an id field

Here's what the salient part of RedisValueSource looks like:

@Override public DocValues getValues(Map context, IndexReader reader) throws IOException {
    final String[] lookup = FieldCache.DEFAULT.getStrings(reader, field);
    final Jedis jedis = new Jedis("localhost");
    return new DocValues() {    

      @Override public String strVal(int doc) {
        final String id = lookup[doc];
        String result = redisDataType.equalsIgnoreCase("h") ?
            jedis.hget(redisKey, id) : Double.toString(jedis.zscore(redisKey, id));
        return result;

      @Override public String toString(int doc) {
        return strVal(doc);


From here, you can use the following Solr query to perform boosting based on the Redis value:

The explain output looks like this:

3.4664698 = (MATCH) sum of:
  1.070082 = (MATCH) weight(cat:electronics in 2), product of:
    0.80067647 = queryWeight(cat:electronics), product of:
      1.3364723 = idf(docFreq=14, maxDocs=21)
      0.59909695 = queryNorm
    1.3364723 = (MATCH) fieldWeight(cat:electronics in 2), product of:
      1.0 = tf(termFreq(cat:electronics)=1)
      1.3364723 = idf(docFreq=14, maxDocs=21)
      1.0 = fieldNorm(field=cat, doc=2)
  2.3963878 = (MATCH) FunctionQuery(redis(h,bar,id)), product of:
    4.0 = 4.0
    1.0 = boost
    0.59909695 = queryNorm

Get the Java IDE that understands code & makes developing enjoyable. Level up your code with IntelliJ IDEA. Download the free trial.


Published at DZone with permission of

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}