DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
  1. DZone
  2. Coding
  3. Languages
  4. Continued Fractions with Sage

Continued Fractions with Sage

John Cook user avatar by
John Cook
·
Feb. 01, 13 · Interview
Like (1)
Save
Tweet
Share
2.84K Views

Join the DZone community and get the full member experience.

Join For Free

My previous post looked at continued fractions and rational approximations for e and gave a little Python code.  I found out later there’s a more direct way to do this in Python using Sage.

At its simplest, the function continued_fraction takes a real number and returns a truncated continued fraction representation. For example, continued_fraction(e)returns

[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1]

Optionally, you can also specify the number of bits of precision in the real argument and the number of terms desired.

By calling the convergents method on the return value of continued_fraction(e)you can find a sequence of rational approximations based on the continued fraction. For example,

print continued_fraction(e).convergents()

produces

[2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465,
1457/536, 2721/1001, 23225/8544, 25946/9545, 49171/18089,
517656/190435, 566827/208524, 1084483/398959,
13580623/4996032, 14665106/5394991, 28245729/10391023].

To get higher precision output, you need higher precision input. For example, you could pass in

RealField(200)(e)

rather than simply e to tell Sage that you’d like to use the 200-bit representation of erather than the default precision.

Precision (computer science) Python (language) POST (HTTP) Pass (software)

Published at DZone with permission of John Cook, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • The Future of Cloud Engineering Evolves
  • Java Development Trends 2023
  • Using the PostgreSQL Pager With MariaDB Xpand
  • Spring Cloud: How To Deal With Microservice Configuration (Part 1)

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: