DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
  1. DZone
  2. Data Engineering
  3. AI/ML
  4. If I Can Learn to Play Atari, I Can Learn TensorFlow

If I Can Learn to Play Atari, I Can Learn TensorFlow

Here is a summary of new deep learning libraries, tools, and updates to existing frameworks.

Tim Spann user avatar by
Tim Spann
CORE ·
Oct. 20, 16 · Opinion
Like (12)
Save
Tweet
Share
16.43K Views

Join the DZone community and get the full member experience.

Join For Free

Deep Learning is becoming the next big area for companies and universities to explore.   Deep Learning libraries are growing and their adoption is expanding.  With Google's open sourcing of TensorFlow, there is a massive rise in deep learning adoption.   I have started using it for it's very interesting Image Recognition capabilities which can be used out of the box with their ImageRecognition example.   Google has released a new TensorFlow library - Image Recognition, Slim.  TF-Slim is a lightweight library for defining, training and evaluating complex models in TensorFlow, which should speed up adoption and ease of use.  TensorFlow also has an update to the Inception RESNET v2 training library.   This should provide for better accuracy.   TensorFlow now runs on Android, Linux, Linux with GPU and MacOS.   Other platforms will be added in the future.   For non-Linux users, I recommend trying in a cloud or on a VM. I have installed TensorFlow on the Hortonworks 2.5 sandbox, so that could be an option for Windows users.  I like the VirtualBox version better and VirtualBox is free and runs well.

There are also updates to Google's Text Summarization in TensorFlow. This technology will extra pieces of a text and create a summary based on a metric that makes that "interesting".   It does require building up your training set and then running some heavy duty processes, but very interesting work indeed. Might work out well for someone automatically writing summarization articles.  Perhaps TensorFlow wrote this article?  How would you know?   If a person wrote it or a Deep Learning algorithm wrote it or one or the other edited it. Hmmm, lots of possibilities here.

Wide and Deep Learning withGoogle's TensorFlow includes an excellent Python-based tutorial and example to follow along.

Google's TensorFlow is a very powerful deep learning (and machine learning) library that includes a lot of usable examples, training data, and tutorials.  I highly recommend learning and using it.  I have two tutorials on using it with Apache NiFi that I wrote:  TensorFlow with Tweets and Using Parsey McParse Face.  Now that I have told you what TensorFlow can do, let's start learning.

Image title

To run my example script, I triggered it from BASH:

/opt/demo/tensorflow/bazel-bin/tensorflow/examples/label_image/label_image 
--image="/tmp/$@" --output_layer="softmax:0" --input_layer="Mul:0"  
--input_std=128 --input_mean=128 
--graph=/opt/demo/tensorflow/tensorflow/examples/label_image/data/tensorflow_inception_graph.pb 
--labels=/opt/demo/tensorflow/tensorflow/examples/label_image/data/imagenet_comp_graph_label_strings.txt 

For installation, this PIP install was critical:

sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.7.1-cp27-none-linux_x86_64.whl


Learning TensorFlow

First start with these excellent TensorFlow tutorials: 

  • HVASS Labs TensorFlow Tutorial

  • Google's TensorFlow Python Tutorial

  • TensorFlow in A Nutshell

  • Sentiment Analysis with TensorFlow

  • A Simple Pattern for Recurrent Deep Learning in TensorFlow

  • Python Deep Learning TensorFlow Tutorial

Second go to Meetups, Like Chris' excellent Spark and Tutorial Meetup.   Mine in Princeton is starting some TensorFlow stuff as well.

Another cool way to learn about TensorFlow is to use it with a machine learning framework that you already know, like H2O.  You will need to learn some Python and also learn how to do some complex installs and builds as TensorFlow uses Google's Bezel build tool and some other tools for building and including many dependencies.

Once you have the basic down you can start integrating TensorFlow with your existing Machine Learning pipelines, one great way to do that is with H2O.   H2O is an ML and DL framework and tools that run many ways including on Hadoop and Spark for massively parallel processing on clusters.   H2O calls there TensorFlow + H2O -> Deep Water. Deep Water is very new and probably shouldn't be in your production pipeline, but data scientists and data engineers should start investigating ASAP.

Here is a very well documented good starter example of doing TensorFlow Image Inception with H2O in Python. Deep Water supports a few deep learning frameworks, but for TensorFlow here you go. I will write an article on Deep Water in the future. If you are interested, please comment on this article.

Once you have the tools and some practice, you know need to do something with your powerful TensorFlow knowledge, tools and cluster. A very recent and interesting project is the Self-driving Car Challenge.   It is a very cool class and challenge from Udacity on building an open source self-driving car using NVidia (GitHub).  Download a lot of image training sets and start training your deep learning models.  Some useful information on this project is available at NVidia Autopilot on TensorFlow and End to End Learning for Self-driving Cars.   Comment here on any problems, questions or interesting findings. You can also engage me on HCC or Twitter.

Never stop learning, there is always a ton of interesting things going on in Big Data.

TensorFlow Deep learning Machine learning

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • A Brief Overview of the Spring Cloud Framework
  • Understanding gRPC Concepts, Use Cases, and Best Practices
  • Top 5 Node.js REST API Frameworks
  • Iptables Basic Commands for Novice

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: