Design for Scalability

DZone 's Guide to

Design for Scalability

· Performance Zone ·
Free Resource

Building scalable system is becoming a hotter and hotter topic. Mainly because more and more people are using computer these days, both the transaction volume and their performance expectation has grown tremendously.


General Principles


"Scalability" is not equivalent to "Raw Performance"

  • Scalability is about reducing the adverse impact due to growth on performance, cost, maintainability and many other aspects
  • e.g. Running every components in one box will have higher performance when the load is small. But it is not scalable because performance drops drastically when the load is increased beyond the machine's capacity

Understand environmental workload conditions that the system is design for

  • Dimension of growth and growth rate: e.g. Number of users, Transaction volume, Data volume
  • Measurement and their target: e.g. Response time, Throughput

Understand who is your priority customers

  • Rank the importance of traffic so you know what to sacrifice in case you cannot handle all of them

Scale out and Not scale up

  • Scale the system horizontally (adding more cheap machine), but not vertically (upgrade to a more powerful machine)

Keep your code modular and simple

  • The ability to swap out old code and replace with new code without worries of breaking other parts of the system allows you to experiment different ways of optimization quickly
  • Never sacrifice code modularity for any (including performance-related) reasons

Don't guess the bottleneck, Measure it

  • Bottlenecks are slow code which are frequently executed. Don't optimize slow code if they are rarely executed
  • Write performance unit test so you can collect fine grain performance data at the component level
  • Setup a performance lab so you can conduct end-to-end performance improvement measurement easily

Plan for growth

  • Do regular capacity planning. Collect usage statistics, predict the growth rate

Common Techniques

Parallel Processing

  • Split the work into smaller chunks and assign each chunk to a pool of worker machines. When the size of work grows, you just need to add more workers into the pool (grow the pool but not individual workers) and your cost grow linearly with respect to the work load.
  • However, this requires the work (algorithm) itself to be parallelizable. This usually mean the steps of execution should be independent of each other.
  • Google's Map/Reduce is a good framework for this model. There is also an open source Java framework Hadoop as well.

Reuse Previous Result

  • This is a time vs space tradeoff. Some executions may use the same set of input parameters over and over again. Therefore, instead of redo the same execution for same input parameters, we can remember the previous execution's result.
  • This is typically implemented as a lookup cache.
  • Memcached and EHCache are some of the popular caching packages

Asynchronous Processing

  • You make a call which returns a result. But you don't need to use the result until at a much later stage of your process. Therefore, you don't need to wait immediately after making the call., instead you can proceed to do other things until you reach the point where you need to use the result.
  • In additional, the waiting thread is idle but consume system resources. For high transaction volume, the number of idle threads is (arrival_rate * processing_time) which can be a very big number if the arrival_rate is high. The system is running under a very ineffective mode
  • The service call in this example is better handled using an asynchronous processing model. This is typically done in 2 ways: Callback and Polling
  • In callback mode, the caller need to provide a response handler when making the call. The call itself will return immediately before the actually work is done at the server side. When the work is done later, response will be coming back as a separate thread which will execute the previous registered response handler. Some kind of co-ordination may be required between the calling thread and the callback thread.
  • In polling mode, the call itself will return a "future" handle immediately. The caller can go off doing other things and later poll the "future" handle to see if the response if ready. In this model, there is no extra thread being created so no extra thread co-ordination is needed.

Implementation design considerations

  • Use efficient algorithms and data structure. Analyze the time (CPU) and space (memory) complexity for logic that are execute frequently (ie: hot spots). For example, carefully decide if hash table or binary tree should be use for lookup.
  • Analyze your concurrent access scenarios when multiple threads accessing shared data. Carefully analyze the synchronization scenario and make sure the locking is fine-grain enough. Also watch for any possibility of deadlock situation and how you detect or prevent them. A wrong concurrent access model can have huge impact in your system's scalability. Also consider using Lock-Free data structure (e.g. Java's Concurrent Package have a couple of them)
  • Analyze the memory usage patterns in your logic. Determine where new objects are created and where they are eligible for garbage collection. Be aware of the creation of a lot of short-lived temporary objects as they will put a high load on the Garbage Collector.
  • However, never trade off code readability for performance. (e.g. Don't try to bundle too much logic into a single method). Let the VM handle this execution for you.

Published at DZone with permission of Ricky Ho , DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}