DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
  1. DZone
  2. Data Engineering
  3. Databases
  4. Differentiating Bananas and Co-bananas

Differentiating Bananas and Co-bananas

John Cook user avatar by
John Cook
·
Feb. 12, 13 · Interview
Like (1)
Save
Tweet
Share
1.31K Views

Join the DZone community and get the full member experience.

Join For Free

I saw a tweet this morning from Patrick Honner pointing to a blog post asking how you might teach derivatives of sines and cosines differently.

One thing I think deserves more emphasis is that “co” in cosine etc. stands for “complement” as in complementary angles. The cosine of an angle is the sine of the complementary angle. For any function f(x), its complement is the function f(π/2 – x).

When memorizing a table of trig functions and their derivatives, students notice a pattern. You can turn one formula into another by replacing every function with its co-function and adding a negative sign on one side. For example,

(d/dx) tan(x) = sec2(x)

and so

(d/dx) cot(x) = – csc2(x)

In words, the derivative of tangent is secant squared, and the derivative of cotangent is negative cosecant squared.

The explanation of this pattern has nothing to do with trig functions per se. It’s just the chain rule applied to f(π/2 – x).

(d/dx) f(π/2 – x) = – f‘(π/2 – x).

Suppose you have some function banana(x) and its derivative is kiwi(x). Then the cobanana function is banana(π/2 – x), the cokiwi function is kiwi((π/2 – x), and the derivative of cobanana(x) is –cokiwi(x). In trig-like notation

(d/dx) ban(x) = kiw(x)

implies

(d/dx) cob(x) = – cok(x).

Now what is unique to sines and cosines is that the second derivative gives you the negative of what you started with. That is, the sine and cosine functions satisfy the differential equation y” = –y. That doesn’t necessarily happen with bananas and kiwis. If the derivative of banana is kiwi, that doesn’t imply that the derivative of kiwi is negative banana. If the derivative of kiwi is negative banana, then kiwis and bananas must be linear combinations of sines and cosines because all solutions to y” = –y have the form asin(x) + b cos(x).

Footnote: Authors are divided over whether the cokiwi function should be abbreviated cok or ckw.

KIWI (openSUSE) ANGLE (software) Form (document) POST (HTTP) Database IT Blog

Published at DZone with permission of John Cook, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • How to Quickly Build an Audio Editor With UI
  • Why Every Fintech Company Needs DevOps
  • Data Mesh vs. Data Fabric: A Tale of Two New Data Paradigms
  • Why You Should Automate Code Reviews

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: