DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

Ensuring the Order of Execution for Tasks

Attila-Mihaly Balazs user avatar by
Attila-Mihaly Balazs
·
Dec. 31, 12 · Interview
Like (0)
Save
Tweet
Share
16.97K Views

Join the DZone community and get the full member experience.

Join For Free

Sometimes it is necessary to impose certain order on the tasks in a threadpool. Issue 206 of the JavaSpecialists newsletter presents one such case: we have multiple connections from which we read using NIO. We need to ensure that events from a given connection are executed in-order but events between different connections can be freely mixed.

I would like to present a similar but slightly different situation: we have N clients. We would like to execute events from a given client in the order they were submitted, but events from different clients can be mixed freely. Also, from time to time, there are “rollup” tasks which involve more than one client. Such tasks should block the tasks for all involved clients (but not more!). Let’s see a diagram of the situation:

As you can see tasks from client A and client B are happily processed in parallel until a “rollup” task comes along. At that point no more tasks of type A or B can be processed but an unrelated task C can be executed (provided that there are enough threads). The skeleton of such an executor is available in my repository. The centerpiece is the following interface:

public interface OrderedTask extends Runnable {
    boolean isCompatible(OrderedTask that);
}

Using this interface the threadpool decides if two tasks may be run in parallel or not (A and B can be run in parallel if A.isCompatible(B) && B.isComaptible(A)). These methods should be implemented in a fast, non locking and time-invariant manner.

The algorithm behind this threadpool is as follows:

  • If the task to be added doesn’t conflict with any existing tasks, add it to the thread with the fewest elements.
  • If it conflicts with elements from exactly one thread, schedule it to be executed on that thread (and implicitly after the conflicting elements which ensures that the order of submission is maintained)
  • If it conflicts with multiple threads, add tasks (shown with red below) on all but the first one of them on which a task on the first thread will wait, after which it will execute the original task.

More information about the implementation:

  • The code is only a proof-of-concept, some more would would be needed to make it production quality (it needs code for exception handling in tasks, proper shutdown, etc)
  • For maximum performance it uses lock-free* structures where available: each worker thread has an associated ConcurrentLinkedQueue. To achieve the sleep-until-work-is-available semantics, an additional Semaphore is used**
  • To be able to compare a new OrderedTask with currently executing ones, a copy of their reference is kept. This list of copies is updated whenever new elements are enqueued (this is has the potential of memory leaks and if tasks are infrequent enough alternatives – like an additional timer for weak references – should be investigated)
  • Compared to the solution in the JavaSpecialists newsletter, this is more similar to a fixed thread pool executor, while the solution from the newsletter is similar to a cached thread pool executor.
  • This implementation is ideal if (a) the tasks are (mostly) short and (mostly) uniform and (b) there are few (one or two) threads submitting new tasks, since multiple submissions are mutually exclusive (but submission and execution isn’t)
  • If immediately after a “rollup” is submitted (and before it can be executed) tasks of the same kind are submitted, they will unnecessarily be forced on one thread. We could add code rearrange tasks after the rollup task finished if this becomes an issue.

Have fun with the source code! (maybe some day I’ll find the time to remove all the rough edges).

* somewhat of a misnomer, since there are still locks, only at a lower – CPU not OS – level, but this is the accepted terminology

** – benchmarking indicated this to be the most performant solution. This was inspired from the implementation of the ThreadPoolExecutor.

Task (computing) Execution (computing)

Published at DZone with permission of Attila-Mihaly Balazs, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • A Real-Time Supply Chain Control Tower Powered by Kafka
  • How Do the Docker Client and Docker Servers Work?
  • The Quest for REST
  • Choosing the Best Cloud Provider for Hosting DevOps Tools

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: