DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones AWS Cloud
by AWS Developer Relations
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones
AWS Cloud
by AWS Developer Relations
11 Monitoring and Observability Tools for 2023
Learn more
  1. DZone
  2. Software Design and Architecture
  3. Cloud Architecture
  4. Exploring AWS Lambda Deployment Limits

Exploring AWS Lambda Deployment Limits

AWS Lambda has some deployment limits. We take a look at them and how to work around them.

John Demian user avatar by
John Demian
·
Nov. 12, 18 · Presentation
Like (4)
Save
Tweet
Share
46.05K Views

Join the DZone community and get the full member experience.

Join For Free

In one of our last articles, we explored how we can deploy Machine Learning models using AWS Lambda. Deploying ML models with AWS Lambda is suitable for early-stage projects as there are certain limitations in using Lambda function. However, this is not a reason to worry if you need to utilize AWS Lambda to its full potential for your Machine Learning project. When working with Lambda functions its a constant worry about the size of deployment packages for a developer.

Let’s first have a look at the AWS Lambda deployment limits and address the 50 MB package size in the AWS official documentation which is kind of delusive as you can make larger deployments of uncompressed files.

AWS Lambda Has the Following Limitations:

Runtime Environment limitations:

  • The disk space is limited to 512 MB. 

  • The default deployment package size is 50 MB.

  • Memory range is from 128 to 1536 MB.

  • Maximum execution timeout for a function is 15 minutes.

  • Requests limitations by lambda: Request and response body payload size are maximized to 6 MB.

  • Event request body can be up to 128 KB.

The reason for defining the limit of 50 MB is that you cannot upload your deployment package to lambda directly with size greater than the defined limit. Technically the limit can be much higher if you let your lambda function pull deployment package from S3. AWS S3 allows for deploying function code with substantially higher deployment package limit as compared to directly uploading to lambda or any other AWS service. As a matter of fact, most of the AWS service default limits can be raised by AWS Service Limits support request.

Still, it is a matter of doubt for many developers as to what is the actual limit. So to find an answer to that very question we are going to test by uploading deployment packages of different sizes.

Deployment Packages

We’ll be working with a Machine Learning model as our deployment package,§ creating a random data of specified size to test the limit with varying sizes. We’ll test the following limits as described in the documentation:

50 MB: Maximum deployment package size

250 MB: Size of code/dependencies that you can zip into a deployment package (uncompressed .zip/.jar size)

For this test, we’ll be using our machine learning model that we created in our last article. It’s an image recognition deep learning model based on TensorFlow Inception-v3 model. Although our data is not so compressed. The overall file size is about 150 MB which is much beyond the specified limit of 50 MB.

Testing

Let’s test it by directly uploading to lambda function. Here are the main steps to be followed:

First we’ll zip our package. This zip package will contain all our files such as:

  • classify_image.py
  • classify_image_graph_def.pb
  • MachineLearning-Bundle.zip

This model was created specifically for this project. However, Machine Learning models can be downloaded from the following sources.

Keras.

TensorFlow: official release, performance models, tensornets

Let's call our package as MachineLearning.zip.

zip MachineLearning.zip MachineLearning 


Now check whether we could compress the file or not.

$ ls -lhtr | grep zip
-rw-r--r-- 1 john staff 123M Nov 4 13:05 MachineLearning.zip

Even after compressing and zipping the overall package size is about 132 MB.

In order to create a lambda function, we need to create IAM role. Since our primary objective is to test the limits we’ll skip over the role creation process. Login to IAM Management Console with your credentials and create a Test-role and attach AWSLambdaRole policy.

AWSLambdaRole

AWSLambdaRole

Next, we’ll create a lambda function via AWS CLI and upload our deployment package directly to the function.


aws lambda create-function --function-name mlearn-test --runtime nodejs6.10 --role arn:aws:iam::XXXXXXXXXXXX:role/Test-role --handler tensorml --region ap-south-1 --zip-file fileb://./MachineLearning.zip


Replace XXXXXXXXXXXX with your AWS Account id. Since our package size is greater than 50 MB specified limit it throws an error.

An error occurred (RequestEntityTooLargeException) when calling the UpdateFunctionCode operation: Request must be smaller than 69905067 bytes for the UpdateFunctionCode operation


Since our deployment package is quite large we will load it again during AWS Lambda inference execution from Amazon S3.For this we need to create AWS S3 bucket from AWS CLI:

aws s3 mb s3://mlearn-test --region ap-south-1


This will create S3 bucket for us. Now we’ll upload our package to this bucket and update our lambda function with the S3 object key.

aws s3 cp ./ s3://mlearn-test/ --recursive --exclude "*" --include "MachineLearning.zip"


Once our package is uploaded into the bucket we’ll update our lambda function with the package’s object key.

aws lambda update-function-code --function-name mlearn-test --region ap-south-1 --s3-bucket mlearn-test --s3-key MachineLearning.zip


This time it shows no error even after updating our lambda function and we’re able to upload our package successfully. Which means that the package size can be greater than 50 MB if uploaded through S3 instead of uploading directly. Since our package size is about 132 MB after compression we are still not clear what is the maximum limit of the package to be uploaded.

In order to get the maximum limit we’ll create a random data of about 300 MB and upload it through S3 and update our lambda function.

fsutil file createnew sample300.txt 350000000


This will create a sample file of about 300 MB. We’ll zip the file and upload it again through S3.

aws s3 cp ./ s3://mlearn-test/ --recursive --exclude "*" --include "sample300.zip"

aws lambda update-function-code --function-name mlearn-test --region ap-south-1 --s3-bucket mlearn-test --s3-key sample300.zip


After updating our lambda function we get the following error:

An error occurred (InvalidParameterValueException) when calling the UpdateFunctionCode operation: Unzipped size must be smaller than 262144000 bytes

The error describes that the size of the unzipped package should be smaller than 262144000 bytes which is about 262 MB. We can notice here that this size is just a little greater than the specified limit of 250 MB size of code/dependences that can be zip into a deployment package (uncompressed .zip/.jar size). So we discovered that the maximum limit of the size of uncompressed deployment package is 250 MB when uploaded via S3. However we can’t upload more than 50 MB package while uploading directly into lambda function.

The important thing to notice here is that your code and its dependencies should be within 250 MB size limit when in uncompressed state. Even if we consider a larger package size it may seriously affect lambda function’s cold start time. Consequently, the lambda function will take longer time to execute with larger package size.

* The maximum execution time has been increased from 5 minutes to 15 in October 2018.

AWS AWS Lambda Machine learning

Published at DZone with permission of John Demian, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Debezium vs DBConvert Streams: Which Offers Superior Performance in Data Streaming?
  • File Uploads for the Web (1): Uploading Files With HTML
  • LazyPredict: A Utilitarian Python Library to Shortlist the Best ML Models for a Given Use Case
  • Metrics Part 2: The DORA Keys

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: