DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones AWS Cloud
by AWS Developer Relations
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones
AWS Cloud
by AWS Developer Relations
11 Monitoring and Observability Tools for 2023
Learn more
  1. DZone
  2. Data Engineering
  3. AI/ML
  4. Exploring the Economics of Wholesale and Retail Algorithmic APIs

Exploring the Economics of Wholesale and Retail Algorithmic APIs

There are ways you can actually open up your algorithms and make them more accessible and deployable, while still helping contribute significantly to your bottom line.

Kin Lane user avatar by
Kin Lane
·
Jan. 04, 17 · Opinion
Like (2)
Save
Tweet
Share
4.78K Views

Join the DZone community and get the full member experience.

Join For Free

I got sucked into a month long project applying machine learning filters to video over the holidays. The project began with me doing the research on the economics behind Algorithmia's machine learning services, specifically the DeepFilter algorithm in their catalog. My algorithmic rotoscope work applying Algorithmia's deep filters to images and drone videos has given me a hands-on view of Algorithmia's approach to algorithms and APIs, as well as the opportunity to think pretty deeply about the economics of all of this. I think Algorithmia's vision of all of this has a lot of potential for not just image filters, but any sort of algorithmic and machine learning API.

Retail Algorithmic and Machine Learning APIs

Using Algorithmia is pretty straightforward. With their API or CLI, you can make calls to a variety of algorithms in their catalog (in this case, their DeepFilter solution). All I do is pass them the URL of an image, what I want the new filtered image to be called, and the name of the filter that I want to be applied. Algorithmia provides an API explorer you can copy and paste the required JSON into. They also provide a demo application for you to use — no JSON required. 

Train Your Own Style Transfer Models With Their AWS AMI

The first "rabbit hole" concept I fell into when doing the research on Algorithmia's model was , providing you step-by-step details on how to train them, including a ready-to-go AWS AMI that you can run as a GPU instance. At first, I thought they were just cannibalizing their own service, but then I realized it was much savvier than that. They were offloading much of the costly compute resources needed to create the models, but the end product still resulted in using their Deep Filter APIs. 

Developing My Own API Layer for Working With Images and Videos

Once I had experience using Algorithmia's deep filter via their API and had produced a handful of my own style transfer models, I got to work designing my own process for uploading and applying the filters to images, eventually separating out videos into individual images, applying the filters, and reassembling them into videos. The entire process start-to-finish is a set of APIs with a couple of them simply acting as a facade for Algorithmia's file upload, download, and DeepFilter APIs. It provided me with a perfect hypothetical business for thinking through the economics of building on top of Algorithmia's platform.

Defining My Hard Costs of Algorithmia's Service and the AWS Compute Needed

Algorithmia provides a pricing calculator along with each of their algorithms, allowing you to easily predict your costs. They charge you per API call and for compute usage by the second. Each API has its own calculator and average runtime duration costs, so I'm easily able to calculate a per-image cost to apply filters — something that exponentially grows when you are applying to 60 frames (images) per second of video. Similarly, when it comes to training filter models using AWS EC2 GUP instance, I have a per hour charge for compute, storage costs, and (now) a pretty good idea of how many hours it takes to make a single filter. 

All of this gives me some pretty solid numbers to work with when trying to build a viable business built on top of Algorithmia. In theory, when my customers use my algorithmic rotoscope image or video interface, as well as the API, I can cover my operating costs and generate a healthy profit by charging a per image cost for applying a machine learning texture filter. What I really think is innovative about Algorithmia's approach is that they are providing an AWS AMI to offload much of the "heavy compute lifting," with all roads still leading back to using their service. It is a model that could quickly shift algorithmic API consumers to be more wholesale and volume consumers from being just a retail level API consumer.

My example of this focuses on images and video, but this model can be applied to any type of algorithmically fueled APIs. It provides me with a model of how you can safely open source the process behind your algorithms as AWS AMI and actually drive more business to your APIs by evolving your API consumers into wholesale API consumers. In my experience, many API providers are very concerned with malicious users reverse-engineering their algorithms via their APIs. However, in reality, in true API fashion, there are ways you can actually open up your algorithms and make them more accessible and deployable, while still helping contribute significantly to your bottom line.

Machine learning API Filter (software)

Published at DZone with permission of Kin Lane, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Stateful Stream Processing With Memphis and Apache Iceberg
  • DeveloperWeek 2023: The Enterprise Community Sharing Security Best Practices
  • A Deep Dive Into AIOps and MLOps
  • What’s New in Flutter 3.7?

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: