DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones AWS Cloud
by AWS Developer Relations
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones
AWS Cloud
by AWS Developer Relations
The Latest "Software Integration: The Intersection of APIs, Microservices, and Cloud-Based Systems" Trend Report
Get the report

Exploring the Language of Fake News

Researchers have found that machine learning algorithms can be trained to spot differences in language between real and fake news articles.

Adi Gaskell user avatar by
Adi Gaskell
·
Mar. 25, 19 · News
Like (1)
Save
Tweet
Share
1.79K Views

Join the DZone community and get the full member experience.

Join For Free

Image title

Recently I looked at work done by a team from the Fraunhofer Institute in Germany to identify fake news, both from the content itself but also metadata associated with it. Such projects are proliferating at quite a pace, with the latest from a MIT-based team, who have documented their work in a recently published paper.

The paper highlights how there are subtle, yet consistent differences between real and fake news stories, and machine learning algorithms can be trained to spot these differences. The researchers developed a deep-learning model that is able to detect the language patterns between real and fake news.

It was tested on a new topic that it hadn't encountered in training, which required the system to classify each article based purely on the language patterns it observed. The authors believe — in this sense — it more realistically replicates how humans consume the news.

"In our case, we wanted to understand what was the decision-process of the classifier based only on language, as this can provide insights on what is the language of fake news," the researchers say. "A key issue with machine learning and artificial intelligence is that you get an answer and don't know why you got that answer, and showing these inner workings takes a first step toward understanding the reliability of deep-learning fake-news detectors."

The Anatomy of Fake News

The analysis was able to identify a number of words that are more likely to appear in either real news or fake news, which in turn allowed them to identify subtle differences in the language used in both forms of content.

The system was trained on a sample of around 12,000 fake news articles from the data website Kaggle. The samples were gleaned from 244 different websites. These were then contrasted with around 2,000 real articles from The New York Times, and 9,000 or so from the Guardian.

The model was first put to the test in the traditional way using a training set of topics to test whether the system was able to identify the fake stories. They worried, however, that this may create an inevitable bias in the system, as some topics are more prone to seeing fake stories than others.

So the researchers trained their model on topics that aren't so common, such as Donald Trump, with the model then being tested on stories that did contain the word "Trump". The results revealed that the traditional approach was able to achieve an accuracy of around 93 percent; the second approach performed at 87 percent.

To further understand matters, the researchers traced their steps backwards, so that each time a prediction was made, the team were able to identify the precise word or part of the story that triggered the prediction. The work is far from complete, and the team admits that they need to polish the system a lot more before it can be of real value to readers. For instance, they may choose to combine the model with automated fact-checkers to help readers combat misinformation.

"If I just give you an article, and highlight those patterns in the article as you're reading, you could assess if the article is more or less fake," they explain. "It would be kind of like a warning to say, 'Hey, maybe there is something strange here.'"
News

Published at DZone with permission of Adi Gaskell, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • The Path From APIs to Containers
  • Cloud Performance Engineering
  • Reliability Is Slowing You Down
  • Building a Real-Time App With Spring Boot, Cassandra, Pulsar, React, and Hilla

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: