Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Fast and Inaccurate: BlinkDB

DZone's Guide to

Fast and Inaccurate: BlinkDB

· Big Data Zone
Free Resource

Access NoSQL and Big Data through SQL using standard drivers (ODBC, JDBC, ADO.NET). Free Download 

The idea might sound strange at first. Why would you want a database that delivers inaccurate data? But BlinkDB trades accuracy for speed. When you query data you can specify how quickly and without much confidence you need the answer: e.g. within 2 seconds, or how accurate you want the answer to be, e.g. 1% error with 95% confidence.

So if you have very large amounts of data (10-100s of Tera Bytes or even Peta Bytes) and you want quick good enough answers then BlinkDB is for you. An early adopter is Facebook. Would you rather have Justin Bieber‘s followers count exactly right in minutes or 99% right as long as your page loads almost instantly? So if you need fast reasonably accurate answers over slow correct answers, BlinkDB is worth checking out.

What can you use BlinkDB for?

  • The obvious use case would be real-time reporting? If you need to take decisions in the blink of an eye, e.g. day traders, and 5-10% error is acceptable, e.g. what is the average change of allcommodity prices in the last 2 seconds.
  • Real-time bookings or price comparison in which users want to know the best possible offer but accept some small error margin, e.g. mobile bar-code scanners that deliver product price comparisons in 1 second instead of 10 will dominate the App Store.
  • Any visitor, friends, tweets, total search results, etc. counter on a large website in the world.
  • Any Power Law or Long Tail data in which there are some extremely popular cases, e.g. Justin Bieber followers, or a very large set of infrequent cases, e.g. the number of blogs that have under 1000 visitors per month.
  • Machine Learning solutions and recommendation engines that are using Collaborative Filteringand other types of algorithms that compare an item or user with large groups of other items and users.
  • and many other use cases…

The fastest databases need the fastest drivers - learn how you can leverage CData Drivers for high performance NoSQL & Big Data Access.

Topics:

Published at DZone with permission of Maarten Ectors, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}