Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Finite Differences with Toeplitz Matrix

DZone's Guide to

Finite Differences with Toeplitz Matrix

· Web Dev Zone ·
Free Resource

Deploying code to production can be filled with uncertainty. Reduce the risks, and deploy earlier and more often. Download this free guide to learn more. Brought to you in partnership with Rollbar.

A Toeplitz matrix is a band matrix in which each descending diagonal from left to right is constant. In this post we will see how to approximate the derivative of a function f(x) as matrix-vector products between a Toeplitz matrix and a vector of equally spaced values of f. Let's see how to generate the matrices we need using the function toeplitz(...) provided by numpy:
from numpy import *
from scipy.linalg import toeplitz
import pylab

def forward(size):
 """ returns a toeplitz matrix
   for forward differences
 """
 r = zeros(size)
 c = zeros(size)
 r[0] = -1
 r[size-1] = 1
 c[1] = 1
 return toeplitz(r,c)

def backward(size):
 """ returns a toeplitz matrix
   for backward differences
 """
 r = zeros(size)
 c = zeros(size)
 r[0] = 1
 r[size-1] = -1
 c[1] = -1
 return toeplitz(r,c).T

def central(size):
 """ returns a toeplitz matrix
   for central differences
 """
 r = zeros(size)
 c = zeros(size)
 r[1] = .5
 r[size-1] = -.5
 c[1] = -.5
 c[size-1] = .5
 return toeplitz(r,c).T

# testing the functions printing some 4-by-4 matrices
print 'Forward matrix'
print forward(4)
print 'Backward matrix'
print backward(4)
print 'Central matrix'
print central(4)

The result of the test above is as follows:
Forward matrix
[[-1.  1.  0.  0.]
 [ 0. -1.  1.  0.]
 [ 0.  0. -1.  1.]
 [ 1.  0.  0. -1.]]

Backward matrix
[[ 1.  0.  0. -1.]
 [-1.  1.  0.  0.]
 [ 0. -1.  1.  0.]
 [ 0.  0. -1.  1.]]

Central matrix
[[ 0.   0.5  0.  -0.5]
 [-0.5  0.   0.5  0. ]
 [ 0.  -0.5  0.   0.5]
 [ 0.5  0.  -0.5  0. ]]

We can observe that the matrix-vector product between those matrices and the vector of equally spaced values of f(x) implements, respectively, the following equations:


Forward difference,





Backward difference,





And central difference,

 


where h is the step size between the samples. Those equations are called Finite Differences and they give us an approximate derivative of f. So, let's approximate some derivatives!

x = linspace(0,10,15)
y = cos(x) # recall, the derivative of cos(x) is sin(x)
# we need the step h to compute f'(x) 
# because the product gives h*f'(x)
h = x[1]-x[2]
# generating the matrices
Tf = forward(15)/h 
Tb = backward(15)/h
Tc = central(15)/h

pylab.subplot(211)
# approximation and plotting
pylab.plot(x,dot(Tf,y),'g',x,dot(Tb,y),'r',x,dot(Tc,y),'m')
pylab.plot(x,sin(x),'b--',linewidth=3)
pylab.axis([0,10,-1,1])

# the same experiment with more samples (h is smaller)
x = linspace(0,10,50)
y = cos(x)
h = x[1]-x[2]
Tf = forward(50)/h
Tb = backward(50)/h
Tc = central(50)/h

pylab.subplot(212)
pylab.plot(x,dot(Tf,y),'g',x,dot(Tb,y),'r',x,dot(Tc,y),'m')
pylab.plot(x,sin(x),'b--',linewidth=3)
pylab.axis([0,10,-1,1])
pylab.legend(['Forward', 'Backward', 'Central', 'True f prime'],loc=4)
pylab.show()
The resulting plot would appear as follows:





As the theory suggests, the approximation is better when h is smaller and the central differences are more accurate (note that, they have an higher order of accuracy respect to the backward and forward ones).

Deploying code to production can be filled with uncertainty. Reduce the risks, and deploy earlier and more often. Download this free guide to learn more. Brought to you in partnership with Rollbar.

Topics:

Published at DZone with permission of

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}