DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Join us tomorrow at 1 PM EST: "3-Step Approach to Comprehensive Runtime Application Security"
Save your seat

Fitting a Triangular Distribution

John Cook user avatar by
John Cook
·
Apr. 05, 15 · Interview
Like (2)
Save
Tweet
Share
7.01K Views

Join the DZone community and get the full member experience.

Join For Free

Sometimes you only need a rough fit to some data and a triangular distribution will do. As the name implies, this is a distribution whose density function graph is a triangle. The triangle is determined by its base, running between points a and b, and a point c somewhere in between where the altitude intersects the base. (c is called the foot of the altitude.) The height of the triangle is whatever it needs to be for the area to equal 1 since we want the triangle to be a probability density.

One way to fit a triangular distribution to data would be to set a to the minimum value and b to the maximum value. You could pick a and b are the smallest and largest possible values, if these values are known. Otherwise you could use the smallest and largest values in the data, or make the interval a little larger if you want the density to be positive at the extreme data values.

How do you pick c? One approach would be to pick it so the resulting distribution has the same mean as the data. The triangular distribution has mean

(a + b + c)/3

so you could simply solve for c to match the sample mean.

Another approach would be to pick c so that the resulting distribution has the same median as the data. This approach is more interesting because it cannot always be done.

Suppose your sample median is m. You can always find a point c so that half the area of the triangle lies to the left of a vertical line drawn through m. However, this might require the foot c to be to the left or the right of the base [a, b]. In that case the resulting triangle is obtuse and so sides of the triangle do not form the graph of a function.

For the triangle to give us the graph of a density function, c must be in the interval [a, b]. Such a density has a median in the range

[b – (b – a)/√2, a + (b – a)/√2].

If the sample median m is in this range, then we can solve for c so that the distribution has median m. The solution is

c = b – 2(b – m)2 / (b – a)

if m < (a + b)/2 and

c = a + 2(a – m)2 / (b – a)

otherwise.

Distribution (differential geometry)

Published at DZone with permission of John Cook, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Web Application Architecture: The Latest Guide
  • Upgrade Guide To Spring Data Elasticsearch 5.0
  • Understanding gRPC Concepts, Use Cases, and Best Practices
  • Key Considerations When Implementing Virtual Kubernetes Clusters

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: