Over a million developers have joined DZone.

Getting Introduced to Presto

DZone's Guide to

Getting Introduced to Presto

This introductory post provides a glimpse into Presto, an open-source distributed SQL query engine specifically designed to handle Big Data workloads.

· Database Zone ·
Free Resource

RavenDB vs MongoDB: Which is Better? This White Paper compares the two leading NoSQL Document Databases on 9 features to find out which is the best solution for your next project.  

Hi, folks!

In today’s blog, I will be introducing you to a new open source distributed SQL Query Engine — Presto. It was designed by the people at Facebook for running SQL queries over Big Data (petabytes of data).


Quoting its formal definition: “Presto is an open source distributed SQL query engine for running interactive analytic queries against data sources of all sizes ranging from gigabytes to petabytes.”

The motive behind the inception of Presto was to enable interactive analytics and approach the speed of commercial data warehouses with the power to scale size of organizations matching Facebook.

Presto is a distributed query engine that runs on a cluster of machines. A full setup includes a coordinator and multiple workers. Queries are submitted from a client, such as the Presto CLI, to the coordinator. The coordinator parses, analyzes, and plans the query execution, then distributes the processing to the workers.


The Idea Behind Presto

Working with terabytes or petabytes of data, one is likely to use tools that interact with Hadoop and HDFS. Presto was designed as an alternative to tools that query HDFS using pipelines of MapReduce jobs such as Hive or Pig, but Presto is not limited to accessing HDFS. Presto can be and has been extended to operate over different kinds of data sources, including traditional relational databases and other data sources, such as Cassandra.

Capabilities of Presto

  • Allow querying over data where it is residing, like Hive, Cassandra, relational databases, or even proprietary data stores.
  • Allowing a single Presto query to combine data from multiple sources.
  • Faster response time breaking the myth that "having fast analytics using an expensive commercial solution or using a slow "free" solution that requires excessive hardware."

Credit Ability

Facebook uses Presto daily to run more than 30,000 queries that, in total, scan over a petabyte each per day over several internal data stores, including their 300PB data warehouse.

Connectors in Presto

Presto supports pluggable connectors that provide data for queries. There are several pre- existent connectors, and Presto provides the ability to connect with custom connectors as well. It supports the following connectors:

  • Hadoop/Hive: Apache Hadoop 1.x, Apache Hadoop 2.x, Cloudera CDH 4, and Cloudera CDH 5.
  • Cassandra: Cassandra 2.x is required. This connector is completely independent of the Hive connector and only requires an existing Cassandra installation.
  • TPC-H: The connector dynamically generates data that can be used for experimenting with Presto.

What Presto Is Not

Before we go further, while analyzing the tool for its features, it becomes equally important to know what it is not capable of. This helps in determining its use cases and usability.

  • Presto is not a general-purpose relational database.

  • It is not a replacement for databases like MySQL, PostgreSQL, or Oracle.

  • Presto is not designed to handle Online Transaction Processing (OLTP).

Competitors vs. Presto

  • Presto continues to lead in BI-type queries and Spark leads performance-wise in large analytics queries. Presto scales better than Hive and Spark for concurrent dashboard queries. Production enterprise BI user-bases may be on the order of 100s or 1,000s of users. As such, support for concurrent query workloads is critical. Benchmarks show that Presto performed the best – that is, showed the least query degradation – as concurrent query workload increased and showed the best results in user concurrency testing.
  • Another advantage of Presto over Spark and Impala is it gets ready in minutes.
  • Presto works directly on files in s3, requiring no ETL transformations.

In my next blog, I will discuss how to get started with Presto.

Happy reading!

Get comfortable using NoSQL in a free, self-directed learning course provided by RavenDB. Learn to create fully-functional real-world programs on NoSQL Databases. Register today.

database ,query engine ,presto ,big data analytics ,tutorial

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}