Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Here's How Vague Priors Can Be Informative

DZone's Guide to

Here's How Vague Priors Can Be Informative

· Big Data Zone
Free Resource

Learn best practices according to DataOps. Download the free O'Reilly eBook on building a modern Big Data platform.

Data analysis has to start from some set of assumptions. Bayesian prior distributions drive some people crazy because they make assumptions explicit that people prefer to leave implicit. But there’s no escaping the need to make some sort of prior assumptions, whether you’re doing Bayesian statistics or not.

One attempt to avoid specifying a prior distribution is to start with a “non-informative” prior. David Hogg gives a good explanation of why this doesn’t accomplish what some think it does.

In practice, investigators often want to “assume nothing” and put a very or infinitely broad prior on the parameters; of course putting a broad prior is not equivalent to assuming nothing, it is just as severe an assumption as any other prior. For example, even if you go with a very broad prior on the parameter a, that is a different assumption than the same form of very broad prior on a2 or on arctan(a). The prior doesn’t just set the ranges of parameters, it places a measure on parameter space. That’s why it is so important.

Find the perfect platform for a scalable self-service model to manage Big Data workloads in the Cloud. Download the free O'Reilly eBook to learn more.

Topics:

Published at DZone with permission of John Cook, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

THE DZONE NEWSLETTER

Dev Resources & Solutions Straight to Your Inbox

Thanks for subscribing!

Awesome! Check your inbox to verify your email so you can start receiving the latest in tech news and resources.

X

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}