Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

DZone's Guide to

# Hopalong Fractals

· Big Data Zone ·
Free Resource

Comment (0)

Save
{{ articles[0].views | formatCount}} Views

How to Simplify Apache Kafka. Get eBook.

Have you ever wondered what happen if you pick a point (x 0,y 0) and compute hundreds of point using these equations?

Well, you get a hopalong fractal.
Let's plot this fractal using Pylab. The following function computes n points using the equations above:

```from __future__ import division
from numpy import sqrt,power

def hopalong(x0,y0,n,a=-55,b=-1,c=-42):def update(x,y):
x1 = y-x/abs(x)*sqrt(abs(b*x+c))
y1 = a-x
return x1,y1
xx =[]
yy =[]for _ in range(n):
x0,y0 = update(x0,y0)
xx.append(x0)
yy.append(y0)return xx,yy```
and this snippet computes 40000 points starting from (-1,10):

```from pylab import scatter,show, cm, axis
from numpy import array,mean
x =-1
y =10
n =40000
xx,yy = hopalong(x,y,n)
cr = sqrt(power(array(xx)-mean(xx),2)+power(array(yy)-mean(yy),2))
scatter(xx, yy, marker='.', c=cr/max(cr),
edgecolor='w', cmap=cm.Dark2, s=50)
axis('equal')
show()```
Here we have one of the possible hopalong fractals:

Varying the starting point and the values of a, b and c we have different fractals. Here are some of them:

(x=-1,y=0,a=.1,b=5,c=1)

(x=-1,y=0,a=5,b=1,c=5)

Topics:

Comment (0)

Save
{{ articles[0].views | formatCount}} Views

Published at DZone with permission of

Opinions expressed by DZone contributors are their own.