DZone
Big Data Zone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
  • Refcardz
  • Trend Reports
  • Webinars
  • Zones
  • |
    • Agile
    • AI
    • Big Data
    • Cloud
    • Database
    • DevOps
    • Integration
    • IoT
    • Java
    • Microservices
    • Open Source
    • Performance
    • Security
    • Web Dev
DZone > Big Data Zone > How medieval astronomers made trig tables

How medieval astronomers made trig tables

John Cook user avatar by
John Cook
·
Dec. 01, 14 · Big Data Zone · Interview
Like (1)
Save
Tweet
5.83K Views

Join the DZone community and get the full member experience.

Join For Free

How would you create a table of trig functions without calculators or calculus?

It’s not too hard to create a table of sines at multiples of 3°. You can use the sum-angle formula for sines

sin(α+β) = sin α cos β + sin β cos α.

to bootstrap your way from known values to other values. Elementary geometry gives you the sines of 45° and 30°, and the sum-angle formula will then give you the sine of 75°. From Euclid’s construction of a 5-pointed star you can find the sine of 72°. Then you can use the sum-angle formula to find the sine of 3° from the sines of 75° and 72°. Ptolemy figured this out in the 2nd century AD.

But if you want a table of trig values at every degree, you need to find the sine of 1°. If you had that, you could bootstrap your way to every other integer number of degrees. Ptolemy had an approximate solution to this problem, but it wasn’t very accurate or elegant.

The Persian astronomer Jamshīd al-Kāshī had a remarkably clever solution to the problem of finding the sine of 1°. Using the sum-angle formula you can find that

sin 3θ = 3 sin θ – 4 sin3 θ.

Setting θ = 1° gives you a cubic equation for the unknown value of sin 1° involving the known value of sin 3°. However, the cubic formula wasn’t discovered until over a century after al-Kāshī. Instead, he used a numerical algorithm more widely useful than the cubic formula: finding a fixed point of an iteration!

Define f(x) = (sin 3° + 4x3)/3. Then sin 1° is a fixed point of f. Start with an approximate value for sin 1° — a natural choice would be (sin 3°)/3 — and iterate. Al-Kāshī used this procedure to compute sin 1° to 16 decimal places.

Here’s a little Python code to play with this algorithm.

from numpy import sin, deg2rad
 
sin3deg = sin(deg2rad(3))
 
def f(x):
    return (sin3deg + 4*x**3)/3
 
x = sin3deg/3
for i in range(4):
    x = f(x)
    print(x)

This shows that after only three iterations the method has converged to floating point precision, which coincidentally is about 16 decimal places, the same as al-Kāshī’s calculation.

Source: Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry

Database

Published at DZone with permission of John Cook, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • 6 Things Startups Can Do to Avoid Tech Debt
  • How to Submit a Post to DZone
  • How to Generate Fake Test Data
  • Composable Architecture

Comments

Big Data Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • MVB Program
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends:

DZone.com is powered by 

AnswerHub logo