DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports
Events Video Library
Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
View Events Video Library
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

Integrating PostgreSQL Databases with ANF: Join this workshop to learn how to create a PostgreSQL server using Instaclustr’s managed service

Mobile Database Essentials: Assess data needs, storage requirements, and more when leveraging databases for cloud and edge applications.

Monitoring and Observability for LLMs: Datadog and Google Cloud discuss how to achieve optimal AI model performance.

Automated Testing: The latest on architecture, TDD, and the benefits of AI and low-code tools.

Related

  • Monitor PostgreSQL Performance Using a Database Health Dashboard
  • Understanding RDS Costs
  • NULL in Oracle
  • Schema Change Management Tools: A Practical Overview

Trending

  • What Is Kubernetes RBAC and Why Do You Need It?
  • REST vs. Message Brokers: Choosing the Right Communication
  • Getting Started With Prometheus Workshop: Instrumenting Applications
  • Four Ways for Developers To Limit Liability as Software Liability Laws Seem Poised for Change
  1. DZone
  2. Data Engineering
  3. Databases
  4. How To Set Up and Monitor Amazon RDS Databases

How To Set Up and Monitor Amazon RDS Databases

Jim Hirschauer user avatar by
Jim Hirschauer
·
Jun. 10, 13 · Interview
Like (0)
Save
Tweet
Share
8.03K Views

Join the DZone community and get the full member experience.

Join For Free

Relational databases are still an important application component even in today’s modern application architectures. There is usually at least one relational database lurking somewhere within the overall application flow and understanding the behavior of these databases is major factor in rapidly troubleshooting application problems. In 2009, Amazon launched their RDS service which basically allows anyone to spin up a MySQL, Oracle, or MS-SQL instance whenever the urge strikes.

While this service is amazingly useful there are also some drawbacks:

  1. You cannot login and access the underlying OS of your database instance. This means that you can’t use any agent based monitoring tools to get the visibility you really want.
  2. The provided CloudWatch monitoring metrics are high level statistics and not helpful in troubleshooting SQL issues.

The good news is that you can monitor all of your Amazon RDS instances using AppDynamics for Databases (AppD4DB) and in this article I will show you how. If you’re unfamiliar with AppD4DB click here for an introduction.

Setting Up A Database Instance In RDS

Creating a new database instance in RDS is really simple.

Step 1, login to your Amazon AWS account and open the RDS interface.

 RDS 1

Step 2, Initiate the “Launch a DB Instance” workflow.

RDS 2

Step 3, select the type of instance you want to launch. In this case we will use MySQL but I did test Oracle and MS-SQL too.

RDS 3

Step 4, fill in the appropriate instance details. Pay attention to the master user name and password as we will use those later when we create our monitoring configuration (although we could create a new user only for monitoring if we want).

RDS 4

Step 5, finish the RDS workflow. Notice I called the database “wordpress” as I will use it to host a WordPress instance. Also notice that we chose to use the “default” DB security group. You will need to access the security group settings after your new instance is created so that you allow access to the database from the internet. For the sake of testing I opened up my database to 0.0.0.0/0 (not shown in this workflow) which allows the entire internet to connect to my database if they have the credentials. You should be much more selective if you have a real database instance with production applications connected.

RDS 5

RDS 6

RDS 7

Step 6, wait for your instance to be created and watch for the “available” status. When you click on the database instance row you will see the details populate in the “Description” tab below. We will use the “Endpoint” information to connect AppD4DB to our new instance. (At this point you can also build the database structure and connect your application to your running instance.)

RDS 8

Monitor Your Database With AppD4DB

Step 1, enable database monitoring from the “Agent Manager” tab in AppD4DB. Notice we map RDS “Endpoint” to AppD4DB “Hostname or IP Address” and in this case we are using the RDS “Master Username” and “Master Password” for “Username” and “Password” in AppD4DB. Also, since Amazon does not allow any access to the associated OS (via SSH or any other method) we cannot enable OS monitoring.

RDS 9

Step 2, start your new database monitoring and use your application. Here is a screen grab showing a couple of slow SQL queries.

RDS SQL Activity

The Results

So here is what I found for each type of database offered by Amazon RDS.

  • MySQL: Fully functional database monitoring.
  • Oracle: Fully functional database monitoring.
  • MS-SQL: All database monitoring functionality works except for File I/O Statistics. This means that we are 99% functional and capture everything else as expected including the ability to show SQL execution plans.

Amazon RDS makes it fast and easy to stand up MySQL, MS-SQL and Oracle databases. AppDynamics for Databases makes it fast and easy to monitor your RDS databases at the level required to solve your application and database problems. Sounds like a perfect match to me. Sign up for your free trial of AppD4DB and see for yourself today.

Relational database Database Monitor (synchronization)

Published at DZone with permission of Jim Hirschauer, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Related

  • Monitor PostgreSQL Performance Using a Database Health Dashboard
  • Understanding RDS Costs
  • NULL in Oracle
  • Schema Change Management Tools: A Practical Overview

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • support@dzone.com

Let's be friends: