Over a million developers have joined DZone.

Infinispan performance tweaks

· Performance Zone

Evolve your approach to Application Performance Monitoring by adopting five best practices that are outlined and explored in this e-book, brought to you in partnership with BMC.

 This article is a follow up to Getting started: Infinispan as remote cache cluster

Out of the box Infinispan configuration works great for low to medium number of GET/PUT operations. But in distributed mode and for heavy  GET/PUT operations, you may frequently see locking failures like this one:

2013-03-22 00:14:20,033 [DEBUG] org.infinispan.server.hotrod.HotRodDecoder HotRodClientMaster-63 - Exception caught
org.infinispan.server.hotrod.HotRodException: org.infinispan.util.concurrent.TimeoutException: Unable to acquire lock after [10 seconds] on key [ByteArrayKey{data=ByteArray{size=18, hashCode=48079ac7, array=0x033e0f3134354065..}}] for requestor [Thread[HotRodClientMaster-63,5,main]]! Lock held by [(another thread)]
        at org.infinispan.server.hotrod.HotRodDecoder.createServerException(HotRodDecoder.scala:214)
        at org.infinispan.server.core.AbstractProtocolDecoder.decode(AbstractProtocolDecoder.scala:75)
        at org.infinispan.server.core.AbstractProtocolDecoder.decode(AbstractProtocolDecoder.scala:45)

Infinispan uses locking to maintain cache consistency. Optimizing locking settings can help improve overall performance. Here are some configuration tips to avoid locking issues and improve concurrency:

    <default>
        <locking concurrencylevel="1000" isolationlevel="READ_COMMITTED" lockacquisitiontimeout="500" uselockstriping="false">
        <jmxstatistics enabled="true" />
        <!-- Configure a asynchronous distributed cache -->
        <clustering mode="distribution">
            <async/>
            <hash numowners="2"></clustering>
        </locking>
    </default>
Explanation:
  • Concurrency level: Adjust this value according to the number of concurrent threads interacting with Infinispan.
  • lockAcquisitionTimeout: Maximum time to attempt a particular lock acquisition. Set this based on your application needs.
  • useLockStriping: If true, a pool of shared locks is maintained for all entries that need to be locked. Otherwise, a lock is created per entry in the cache. Lock striping helps control memory footprint but may reduce concurrency in the system.
Another configuration worth looking at it Level 1 (L1) cache. An L1 cache prevents unnecessary remote fetching of entries mapped to remote caches by storing them locally for a short time after the first time they are accessed. Read more here.


Learn tips and best practices for optimizing your capacity management strategy with the Market Guide for Capacity Management, brought to you in partnership with BMC.

Topics:

Published at DZone with permission of Nishant Chandra, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

The best of DZone straight to your inbox.

SEE AN EXAMPLE
Please provide a valid email address.

Thanks for subscribing!

Awesome! Check your inbox to verify your email so you can start receiving the latest in tech news and resources.
Subscribe

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}