DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
  1. DZone
  2. Coding
  3. Java
  4. Java Intrinsics and Performance

Java Intrinsics and Performance

Peter Lawrey user avatar by
Peter Lawrey
·
Nov. 20, 12 · Interview
Like (0)
Save
Tweet
Share
7.37K Views

Join the DZone community and get the full member experience.

Join For Free

The original question was How to count the number of 1's a number will have in binary? I included a performance comparison of using Integer.bitCount() which can be turned into an intrinic i.e. a single machine code instruction POPCNT and the Java code which does the same thing.

Question

How do I count the number of 1's a number will have in binary?
So let's say I have the number 45, which is equal to 101101 in binary and has 4 1's in it. What's the most efficient way to write an algorithm to do this?

Answer

Instead of writing an algorithm to do this it's best to use the built in function. Integer.bitCount()

What makes this especially efficient is that the JVM can treat this as an intrinsic. i.e. recognise and replace the whole thing with a single machine code instruction on a platform which supports it e.g. Intel/AMD


To demonstrate how effective this optimization is
public static void main(String... args) {
    perfTestIntrinsic();

    perfTestACopy();
}

private static void perfTestIntrinsic() {
    long start = System.nanoTime();
    long countBits = 0;
    for (int i = 0; i < Integer.MAX_VALUE; i++)
        countBits += Integer.bitCount(i);
    long time = System.nanoTime() - start;
    System.out.printf("Intrinsic: Each bit count took %.1f ns, countBits=%d%n", (double) time / Integer.MAX_VALUE, countBits);
}

private static void perfTestACopy() {
    long start2 = System.nanoTime();
    long countBits2 = 0;
    for (int i = 0; i < Integer.MAX_VALUE; i++)
        countBits2 += myBitCount(i);
    long time2 = System.nanoTime() - start2;
    System.out.printf("Copy of same code: Each bit count took %.1f ns, countBits=%d%n", (double) time2 / Integer.MAX_VALUE, countBits2);
}

// Copied from Integer.bitCount()
public static int myBitCount(int i) {
    // HD, Figure 5-2
    i = i - ((i >>> 1) & 0x55555555);
    i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
    i = (i + (i >>> 4)) & 0x0f0f0f0f;
    i = i + (i >>> 8);
    i = i + (i >>> 16);
    return i & 0x3f;
}


prints

Intrinsic: Each bit count took 0.4 ns, countBits=33285996513
Copy of same code: Each bit count took 2.4 ns, countBits=33285996513
Each bit count using the intrinsic version and loop takes just 0.4 nano-second on average. Using a copy of the same code takes 6x longer (gets the same result)


Java (programming language)

Published at DZone with permission of Peter Lawrey, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Distributed SQL: An Alternative to Database Sharding
  • How To Use Terraform to Provision an AWS EC2 Instance
  • Understanding gRPC Concepts, Use Cases, and Best Practices
  • Spring Cloud: How To Deal With Microservice Configuration (Part 1)

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: