Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Language Popularity on GitHub

DZone's Guide to

Language Popularity on GitHub

· Java Zone
Free Resource

Build vs Buy a Data Quality Solution: Which is Best for You? Gain insights on a hybrid approach. Download white paper now!

RedMonk just published their latest survey of Github’s most popular languages, and given Github’s continuous growth in popularity, they are worth a look.

Here are the results at a glance:

  • Javascript is seeing a consistent and serious growth.
  • Ruby is in sharp decline.
  • Python is showing a decline as well, although not as severe as Ruby.
  • Java is showing some growth, and it’s also the only JVM language in the top 12 listed by Red Monk.

I’m going to go out on a limb and predict that Python is being replaced by Go. I don’t have a lot of information to back up this prediction except that most of the positive articles I read about Go are written by Python developers, and a lot of them say that they are now actively migrating their code base from Python to Go. I don’t see as much enthusiasm for Go from developers using statically typed languages, probably because of Go’s antiquated type system (which is still a big step up from Python, obviously).

It’s interesting to see Java continue to grow twenty years after its introduction. I think this constant growth is fueled by the language’s remarkable versatility and its ability to adapt to new technologies but also driven by a series of constant popularity boosts such as Android five years ago and Java 8 this year.

I’m surprised not to see Groovy in this top 12 of languages, since it’s usually acknowledged as the second most popular language on the JVM and I expected its popularity grow thanks to Gradle, but this doesn’t seem to be enough to crack the top 12 on Red Monk.

Update: Discussion on reddit

Build vs Buy a Data Quality Solution: Which is Best for You? Maintaining high quality data is essential for operational efficiency, meaningful analytics and good long-term customer relationships. But, when dealing with multiple sources of data, data quality becomes complex, so you need to know when you should build a custom data quality tools effort over canned solutions. Download our whitepaper for more insights into a hybrid approach.

Topics:

Published at DZone with permission of Cedric Beust, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}