Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

LaTex in R Graphs

DZone's Guide to

LaTex in R Graphs

· Big Data Zone ·
Free Resource

Hortonworks Sandbox for HDP and HDF is your chance to get started on learning, developing, testing and trying out new features. Each download comes preconfigured with interactive tutorials, sample data and developments from the Apache community.

A nice post was recently published on the rsnippets blog, about the tikzDevice R package. This package is – indeed – awesome. Even if it has been removed from the CRAN website. Of course, it can be download from the archive folder, on http://cran.r-project.org/…, but also (for a more recent version)  on http://download.r-forge.r-project.org/…. But first, it is necessary to install the following package.

> install.packages("filehash")

Then, we download on of the tikzDevice.zip files, and load it, e.g. using (on Mac)

Then, we can load the library

> library("tikzDevice")

If we want to use nice LaTeX formulas, it might be necessary to upload some (LaTeX) libraries and to specify the encoding format

> "options(tikzMetricPackages = c("\\usepackage[utf8]{inputenc}",
+ "\\usepackage[T1]{fontenc}", "\\usetikzlibrary{calc}", "\\usepackage{amssymb}"))

(this is detailed, e.g. in http://yihui.name/…), then, we write a code to plot a graph. The idea is to produce a tex file which contains the graph, or more precisely which will produce a pdf graph when we compile it. We start with

> tikz("normal-dist.tex", width = 8, height = 4, 
+ standAlone = TRUE,
+ packages = c("\\usepackage{tikz}",
+ "\\usepackage
 
  {preview}",
+ "\\PreviewEnvironment{pgfpicture}",
+ "\\setlength\\PreviewBorder{0pt}",
+ "\\usepackage{amssymb}"))
 

We will produce a 8×4 graph. The graph is the following,

> u=seq(-3,3,by=.01)
> plot(u,dnorm(u),type="l",axes=FALSE,xlab="",ylab="",col="white")
> axis(1)
> I=which((u>=0)&(u<=1))
> polygon(c(u[I],rev(u[I])),c(dnorm(u)[I],rep(0,length(I))),col="red",border=NA)
> lines(u,dnorm(u),lwd=2,col="blue")

We can add text (or TeX based text)

> text(-1.5, dnorm(-1.5)+.17, "$\\textcolor{blue}{X\\sim\\mathcal{N}(0,1)}$", cex = 1.5)
> text(1.75, dnorm(1.75)+.25, 
+ "$\\textcolor{red}{\\mathbb{P}(X\\in[0,1])=\\displaystyle{\\int_0^1 \\varphi(x)dx}}$", cex = 1.5)

And we end the file with a standard

> dev.off()

This will produce a [a href="http://freakonometrics.free.fr/normal-dist.tex" style="text-decoration: none; outline-style: none; color: rgb(0, 130, 137);"].tex file. If we compile this file, we can generate a pdf file, that can be inserted in lecture notes, slides or articles,

Nice, isn’t it ?

Hortonworks Community Connection (HCC) is an online collaboration destination for developers, DevOps, customers and partners to get answers to questions, collaborate on technical articles and share code examples from GitHub.  Join the discussion.

Topics:

Published at DZone with permission of

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}