DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

The Lindy Effect and Technology Survival Patterns

John Cook user avatar by
John Cook
·
Dec. 19, 12 · Interview
Like (1)
Save
Tweet
Share
5.10K Views

Join the DZone community and get the full member experience.

Join For Free

The longer a technology has been around, the longer it’s likely to stay around. This is a consequence of the Lindy effect. Nassim Taleb describes this effect in Antifragile but doesn’t provide much mathematical detail. Here I’ll fill in some detail.

Taleb, following Mandelbrot, says that the lifetimes of intellectual artifacts follow a power law distribution. So assume the survival time of a particular technology is a random variable X with a Pareto distribution. That is, X has a probability density of the form

f(t) = c/tc+1

for t ≥ 1 and for some c > 0. This is called a power law because the density is proportional to a power of t.

If c > 1, the expected value of X exists and equals c/(c-1). The conditional expectation of Xgiven that X has survived for at least time k is ck/(c-1). This says that the expected additional life X is ck/(c-1) – k = k/(c-1), and so the expected additional life of X is proportional to the amount of life seen so far. The proportionality constant 1/(c-1) depends on the power c that controls the thickness of the tails. The closer c is to 1, the longer the tail and the larger the proportionality constant. If c = 2, the proportionality constant is 1. That is, the expected additional life equals the life seen so far.

Note that this derivation computed E( X | X > k ), i.e. it only conditions on knowing that X> k. If you have additional information, such as evidence that a technology is in decline, then you need to condition on that information. But if all you know is that a technology has survived a certain amount of time, you can estimate that it will survive about that much longer.

This says that technologies have different survival patterns than people or atoms. The older a person is, the fewer expected years he has left. That is because human lifetimes follow thin-tailed distributions. Atomic decay follows a medium-tailed exponential distribution. The expected additional time to decay is independent of how long an atom has been around. But for technologies follow a thick-tailed distribution.

Another way to look at this is to say that human survival times have an increasing hazard function and atoms have a constant hazard function. The hazard function for a Pareto distribution is c/t and so decreases with time.

IT

Published at DZone with permission of John Cook, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Kotlin Is More Fun Than Java And This Is a Big Deal
  • Load Balancing Pattern
  • Asynchronous HTTP Requests With RxJava
  • 2023 Software Testing Trends: A Look Ahead at the Industry's Future

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: