# Linear Regression Using Numpy

# Linear Regression Using Numpy

Join the DZone community and get the full member experience.

Join For FreeDeploying code to production can be filled with uncertainty. Reduce the risks, and deploy earlier and more often. Download this free guide to learn more. Brought to you in partnership with Rollbar.

A linear regression line is of the form w

_{1}x+w

_{2}=y and it is the line that minimizes the sum of the squares of the distance from each data point to the line. So, given n pairs of data (x

_{i}, y

_{i}), the parameters that we are looking for are w

_{1}and w

_{2}which minimize the error

and we can compute the parameter vector

**w**= (w

_{1}, w

_{2})

^{T}as the least-squares solution of the following over-determined system

Let's use numpy to compute the regression line:

from numpy import arange,array,ones,random,linalg from pylab import plot,show xi = arange(0,9) A = array([ xi, ones(9)]) # linearly generated sequence y = [19, 20, 20.5, 21.5, 22, 23, 23, 25.5, 24] w = linalg.lstsq(A.T,y)[0] # obtaining the parameters # plotting the line line = w[0]*xi+w[1] # regression line plot(xi,line,'r-',xi,y,'o') show()We can see the result in the plot below.

You can find more about data fitting using numpy in the following posts:

Deploying code to production can be filled with uncertainty. Reduce the risks, and deploy earlier and more often. Download this free guide to learn more. Brought to you in partnership with Rollbar.

Published at DZone with permission of Giuseppe Vettigli , DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

## {{ parent.title || parent.header.title}}

## {{ parent.tldr }}

## {{ parent.linkDescription }}

{{ parent.urlSource.name }}