DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
  1. DZone
  2. Data Engineering
  3. AI/ML
  4. Machine Learning: What Business Leaders Need to Know

Machine Learning: What Business Leaders Need to Know

In this article, we provide an overview of machine learning for business leaders.

Chris Kambala user avatar by
Chris Kambala
·
Feb. 26, 19 · Opinion
Like (2)
Save
Tweet
Share
5.07K Views

Join the DZone community and get the full member experience.

Join For Free

Introduction

Machine Learning has garnered a significant share of recent press coverage in both tech and main street media. It is inextricably intertwined with discussion and dialogue on topics ranging from general big data to Facebook’s threat to privacy, Boston Dynamics creepy robotics, and Google’s exploitation of artificial intelligence for good and ill. As such, it is easy to view machine learning as either sinister or magical — neither of which is true. For today’s business leader, an objective and actionable understanding of machine learning is as important as an actionable understanding of finance and financial management.

In this article, we provide an overview of machine learning for business leaders: what it is and how to think about its applicability to your business.

What Machine Learning Is

Machine learning (ML) is a data-driven system development paradigm. ML systems leverage data models, data analysis, and feedback to define and refine algorithms to improve model accuracy and system results.

ML systems work by analyzing data to detect patterns or by applying predefined rules to:

  • Categorize or catalog like objects
  • Predict likely outcomes or actions based on identified patterns
  • Identify unknown patterns and relationships
  • Detect anomalous or unexpected behaviors

Different algorithms learn in different ways. But in general, as new data is provided to the ML system, the system “learns,” and the algorithm’s performance improves over time.

Problems Suited to Machine Learning

ML, like other software development paradigms, is not one-size-fits-all — some approaches are better suited to particular classes of problems and not suitable for others.

Machine learning is particularly suited to problems where:

  • Logical rules are unavailable or insufficient to describe the environment, but actionable rules can be intuited
  • Next actions are varied and the best action depends on conditions that cannot be identified in advance
  • Understanding why an outcome is suggested is not as important as the accuracy of the outcome
  • The data is problematic for traditional analytic methods

Now that you know what machine learning is and how to identify problems that lend themselves to ML solutions, let’s explore the steps to define and conduct an ML project.

How to Plan and Execute a Machine Learning Project

Well-executed ML systems follow these recommended steps:

  1. Define Problem
  2. Prepare Data
  3. Evaluate Algorithms
  4. Improve Results
  5. Present Results

These steps, while seemingly generic and common to traditional software system development, require the perspective and attention gained from experience with ML system development.

The best way to approach machine learning system development is to work through an ML project end-to-end and cover the key steps with an experienced guide or team. Every step, from loading data, summarizing data, evaluating algorithms, making initial predictions, and refining and presenting results is improved by experience — much like an ML system.

Accordingly, your first project should be viewed as a learning process to understand the mechanics of machine learning, it should calibrate your expectations and provide a perspective for setting expectations, and it should interpret and present results from dynamic learning systems. After tackling your first project with expert assistance, you will be prepared to spot and sponsor the next more consequential machine learning opportunity.

Machine learning Big data

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Top 10 Secure Coding Practices Every Developer Should Know
  • AWS Cloud Migration: Best Practices and Pitfalls to Avoid
  • How To Create and Edit Excel XLSX Documents in Java
  • Core Machine Learning Metrics

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: