Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Mean Residual Time

DZone's Guide to

Mean Residual Time

· Big Data Zone ·
Free Resource

Hortonworks Sandbox for HDP and HDF is your chance to get started on learning, developing, testing and trying out new features. Each download comes preconfigured with interactive tutorials, sample data and developments from the Apache community.

If something has survived this far, how much longer is it expected to survive? That’s the question answered by mean residual time.

For a positive random variable X, the mean residual time for X is a function eX(t) given by

e_X(t) = E(X - t \mid X > t) = \int_t^\infty  \frac{1 - F_X(x)}{1-F_X(t)} \, dx

provided the expectation and integral converge. Here F(t) is the CDF, the probability that X is greater than t.

For an exponential distribution, the mean residual time is constant. For a Pareto (power law) distribution, the mean residual time is proportional to t. This has an interesting consequence, known as the Lindy effect.

Now let’s turn things around. Given function a function e(t), can we find a density function for a positive random variable with that mean residual time? Yes.

The equation above yields a differential equation for F, the CDF of the distribution.

If we differentiate both sides of

e(t) (1 - F(t)) = \int_t^\infty 1 - F(x)\, dx

with respect to t and rearrange, we get the first order differential equation

F'(t) + g(t)\, F(t) = g(t)

where

g(t) = \frac{e'(t) + 1}{e(t)}

The initial condition must be F(0) = 0 because we’re looking for the distribution of a positive random variable, i.e. the probability of X being less than zero must be 0. The solution is then

F(t) = 1 - \frac{e(0)}{e(t)} \exp\left( -\int_0^t \frac{dx}{e(x)} \right)

This means that for a desired mean residual time, you can use the equation above to create a CDF function to match. The derivative of the CDF function gives the PDF function, so differentiate both sides to get the density.

Hortonworks Community Connection (HCC) is an online collaboration destination for developers, DevOps, customers and partners to get answers to questions, collaborate on technical articles and share code examples from GitHub.  Join the discussion.

Topics:

Published at DZone with permission of

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}