Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Mutually Odd Functions

DZone's Guide to

Mutually Odd Functions

· Big Data Zone
Free Resource

Need to build an application around your data? Learn more about dataflow programming for rapid development and greater creativity. 

The floor of a real number x is the largest integer n ≤ x, written ⌊x⌋.

The ceiling of a real number x is the smallest integer n ≥ x, written ⌈x⌉.

The floor and ceiling have the following symmetric relationship:

⌊-x⌋ = -⌈x
⌈-x⌉ = -⌊x

The floor and ceiling functions are not odd, but as a pair they satisfy a generalized parity condition:

f(-x) = -g(x)
g(-x) = -f(x)

If the functions f and g are equal, then each is an odd function. But in general f and g could be different, as with floor and ceiling.

Is there an established name for this sort of relation? I thought of “mutually odd” because it reminds me of mutual recursion.

Can you think of other examples of mutually odd functions?

Check out the Exaptive data application Studio. Technology agnostic. No glue code. Use what you know and rely on the community for what you don't. Try the community version.

Topics:

Published at DZone with permission of John Cook, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

THE DZONE NEWSLETTER

Dev Resources & Solutions Straight to Your Inbox

Thanks for subscribing!

Awesome! Check your inbox to verify your email so you can start receiving the latest in tech news and resources.

X

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}