Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Out-of-Sample One Step Forecasts

DZone's Guide to

Out-of-Sample One Step Forecasts

· Big Data Zone ·
Free Resource

The open source HPCC Systems platform is a proven, easy to use solution for managing data at scale. Visit our Easy Guide to learn more about this completely free platform, test drive some code in the online Playground, and get started today.

It is com­mon to fit a model using train­ing data, and then to eval­u­ate its per­for­mance on a test data set. When the data are time series, it is use­ful to com­pute one-​​step fore­casts on the test data. For some rea­son, this is much more com­monly done by peo­ple trained in machine learn­ing rather than statistics.

If you are using the fore­cast pack­age in R, it's eas­ily done with ETS and ARIMAmod­els. For example:

library(forecast)
fit <- ets(trainingdata)
fit2 <- ets(testdata, model=fit)
onestep <- fitted(fit2)

Note that the sec­ond call to ets does not involve the model being re-​​estimated. Instead, the model obtained in the first call is applied to the test data in the sec­ond call. This works because fit­ted val­ues are one-​​step fore­casts in a time series model.

The same process works for ARIMA mod­els when ets is replaced by Arima orauto.arima. Note that it does not work with the arima func­tion from the stats pack­age. One of the rea­sons I wrote Arima (in the fore­cast pack­age) is to allow this sort of thing to be done.

Managing data at scale doesn’t have to be hard. Find out how the completely free, open source HPCC Systems platform makes it easier to update, easier to program, easier to integrate data, and easier to manage clusters. Download and get started today.

Topics:

Published at DZone with permission of

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}