DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones AWS Cloud
by AWS Developer Relations
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Partner Zones
AWS Cloud
by AWS Developer Relations
  1. DZone
  2. Software Design and Architecture
  3. Cloud Architecture
  4. Performance Certification of Couchbase Autonomous Operator on Kubernetes

Performance Certification of Couchbase Autonomous Operator on Kubernetes

Take a look at detailed performance results from running YCSB Performance benchmark tests on Couchbase Server 5.5.

Raju Suravarjjala user avatar by
Raju Suravarjjala
·
Sep. 25, 18 · Analysis
Like (5)
Save
Tweet
Share
4.34K Views

Join the DZone community and get the full member experience.

Join For Free

At Couchbase, we take performance very seriously, and with the launch of our new product, Couchbase Autonomous Operator 1.0, we wanted to make sure it’s Enterprise-grade and production ready for customers.

In this post, we will discuss the detailed performance results from running YCSB Performance Benchmark tests on Couchbase Server 5.5 using the Autonomous Operator to deploy on Kubernetes platform. One of the big concerns for Enterprises planning to run a database on Kubernetes is "performance."

This document gives a quick comparison of two workloads, namely YCSB A & E with Couchbase Server 5.5 on Kubernetes vs. bare metal.

YCSB Workload A: This workload has a mix of 50/50 reads and writes. An application example is a session store recording recent actions.

Workload E: Short ranges: In this workload, short ranges of records are queried, instead of individual records. Application example: threaded conversations, where each scan is for the posts in a given thread (assumed to be clustered by thread id).

In general, we observed no significant performance degradation in running Couchbase Cluster on Kubernetes, Workload A had on par performance compared to bare metal and Workload E had approximately less than 10% degradation.

Setup

For the setup, Couchbase was installed using the Operator deployment as stated below. For more details on the setup, please refer here.

Files

Operator deployment: deployment.yaml (See Appendix)

Couchbase deployment: couchbase-cluster-simple-selector.yaml (See Appendix)

Client / workload generator deployment: pillowfight-ycsb.yaml (See Appendix) (Official pillowfight docker image from dockerhub and installed java and YCSB manually on top of it)

Hardware

7 servers

24 CPU x 64GB RAM per server

Couchbase Setup

4 servers: 2 data nodes, 2 index+query nodes

40GB RAM quota for data service

40GB RAM quota for index services

1 data/bucket replica

1 primary index replica

Tests

YCSB WorkloadA and WorkloadE

10M docs

Workflow after new empty k8s cluster is initialized on 7 servers:

# assign labels to the nodes so all services/pods will be assigned to right servers:
kubectl label nodes arke06-sa09 type=power
kubectl label nodes arke07-sa10 type=client
kubectl label nodes ark08-sa11 type=client
kubectl label nodes arke01-sa04 type=kv
kubectl label nodes arke00-sa03 type=kv
kubectl label nodes arke02-sa05 type=kv
kubectl label nodes arke03-sa06 type=kv



#deploy Operator: kubectl create -f deployment.yaml #deploy Couchbase kubectl create -f couchbase-cluster-simple-selector.yaml #deploy Client(s): kubectl create -f pillowfight-ycsb.yaml I ran my tests directly from the client node by logging into the docker image of the client pod: docker exec -it --user root <pillowfight-yscb container id> bash And installing YCSB environment there manually: apt-get upgrade apt-get update apt-get install -y software-properties-common apt-get install python sudo apt-add-repository ppa:webupd8team/java sudo apt-get update sudo apt-get install oracle-java8-installer export JAVA_HOME=/usr/lib/jvm/java-8-oracle cd /opt wget http://download.nextag.com/apache/maven/maven-3/3.5.4/binaries/apache-maven-3.5.4-bin.tar.gz sudo tar -xvzf apache-maven-3.5.4-bin.tar.gz export M2_HOME="/opt/apache-maven-3.5.4" export PATH=$PATH:/opt/apache-maven-3.5.4/bin sudo update-alternatives --install "/usr/bin/mvn" "mvn" "/opt/apache-maven-3.5.4/bin/mvn" 0 sudo update-alternatives --set mvn /opt/apache-maven-3.5.4/bin/mvn git clone http://github.com/couchbaselabs/YCSB

Running the workloads:


Examples of YCSB commands used in this exercise: Workload A Load: ./bin/ycsb load couchbase2 -P workloads/workloade -p couchbase.password=password -p couchbase.host=10.44.0.2 -p couchbase.bucket=default -p couchbase.upsert=true -p couchbase.epoll=true -p couchbase.boost=48 -p couchbase.persistTo=0 -p couchbase.replicateTo=0 -p couchbase.sslMode=none -p writeallfields=true -p recordcount=10000000 -threads 50 -p maxexecutiontime=3600 -p operationcount=1000000000 Run: ./bin/ycsb run couchbase2 -P workloads/workloada -p couchbase.password=password -p couchbase.host=10.44.0.2 -p couchbase.bucket=default -p couchbase.upsert=true -p couchbase.epoll=true -p couchbase.boost=48 -p couchbase.persistTo=0 -p couchbase.replicateTo=0 -p couchbase.sslMode=none -p writeallfields=true -p recordcount=10000000 -threads 50 -p operationcount=1000000000 -p maxexecutiontime=600 -p exportfile=ycsb_workloadA_22vCPU.log

Test results:

Env Direct setup Kubernetes pod resources Test Bare metal Kubernetes Delta
Env 1 22 vCPU, 48 GB RAM

(cpu cores and RAM available are set on OS core level)

Limit to:

cpu: 22000m = ~22vCPU

mem: 48GB

All pods are on dedicated nodes

WorkloadA

50/50 get/upsert

Throughput: 194,158req/sec

CPU usage avg: 86% of all 22 cores

Throughput: 192,190req/sec

CPU usage avg: 94% of the cpu quota

– 1%
Env 2 16 vCPU, 48 GB RAM

(cpu cores and RAM available are set on OS core level)

Limit to:

cpu: 16000m = ~16vCPU

mem: 48GB

All pods are on dedicated nodes

WorkloadA

50/50 get/upsert

Throughput: 141,909req/sec

CPU usage avg: 89% of all 16 cores

Throughput: 145,430req/sec

CPU usage avg: 100% of the cpu quota

+ 2.5%



Workload E: Load: ./bin/ycsb load couchbase2 -P workloads/workloade -p couchbase.password=password -p couchbase.host=10.44.0.2 -p couchbase.bucket=default -p couchbase.upsert=true -p couchbase.epoll=true -p couchbase.boost=48 -p couchbase.persistTo=0 -p couchbase.replicateTo=0 -p couchbase.sslMode=none -p writeallfields=true -p recordcount=10000000 -threads 50 -p maxexecutiontime=3600 -p operationcount=1000000000 Run: ./bin/ycsb run couchbase2 -P workloads/workloade -p couchbase.password=password -p couchbase.host=10.44.0.2 -p couchbase.bucket=default -p couchbase.upsert=true -p couchbase.epoll=true -p couchbase.boost=48 -p couchbase.persistTo=0 -p couchbase.replicateTo=0 -p couchbase.sslMode=none -p writeallfields=true -p recordcount=10000000 -threads 50 -p operationcount=1000000000 -p maxexecutiontime=600 -p exportfile=ycsb_workloadE_22vCPU.log


Env Direct setup Kubernetes pod resources Test Bare metal Kubernetes Delta
Env 1 22 vCPU, 48 GB RAM

(cpu cores and RAM available are set on OS core level)

Limit to:

cpu: 22000m = ~22vCPU

mem: 48GB

All pods are on dedicated nodes

WorkloadE

95/5 scan/insert

Throughput: 15,823req/sec

CPU usage avg: 85% of all 22 cores

Throughput: 14,281req/sec

CPU usage avg: 87% of the cpu quota

– 9.7%
Env 2 16 vCPU, 48 GB RAM

(cpu cores and RAM available are set on OS core level)

Limit to:

cpu: 16000m = ~16vCPU

mem: 48GB

All pods are on dedicated nodes

WorkloadE

95/5 scan/insert

Throughput: 13,014req/sec

CPU usage avg: 91% of all 16 cores

Throughput: 12,579req/sec

CPU usage avg: 100% of the cpu quota

– 3.3%

Conclusions

Couchbase Server 5.5 is production ready to be deployed on Kubernetes with the Autonomous Operator. Performance of Couchbase Server 5.5 on Kubernetes comparable to running on bare metal. There is little performance penalty in running Couchbase Server on Kubernetes platform. Looking at the results Workload A had on par performance compared to bare metal and Workload E had approximately less than 10% degradation.

References

  1. YCSB Workloads https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
  2. Couchbase Kubernetes page https://www.couchbase.com/products/cloud/kubernetes
  3. Download Couchbase Autonomous Operator https://www.couchbase.com/downloads
  4. Introducing Couchbase Operator https://blog.couchbase.com/couchbase-autonomous-operator-1-0-for-kubernetes-and-openshift/

Appendix

My deployment.yaml file:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: couchbase-operator
spec:
  replicas: 1
  template:
    metadata:
      labels:
        name: couchbase-operator
    spec:
      nodeSelector:
        type: power
      containers:
      - name: couchbase-operator
        image: couchbase/couchbase-operator-internal:1.0.0-292
        command:
        - couchbase-operator
        # Remove the arguments section if you are installing the CRD manually
        args:
        - -create-crd
        - -enable-upgrades=false
        env:
        - name: MY_POD_NAMESPACE
          valueFrom:
            fieldRef:
              fieldPath: metadata.namespace
        - name: MY_POD_NAME
          valueFrom:
            fieldRef:
              fieldPath: metadata.name
        ports:
          - name: readiness-port
            containerPort: 8080
        readinessProbe:
          httpGet:
            path: /readyz
            port: readiness-port
          initialDelaySeconds: 3
          periodSeconds: 3
          failureThreshold: 19

My couchbase-cluster-simple-selector.yaml file:

apiVersion: couchbase.database.couchbase.com/v1

kind: CouchbaseCluster

metadata:

 name: cb-example

spec:

 baseImage: couchbase/server

 version: enterprise-5.5.0

 authSecret: cb-example-auth

 exposeAdminConsole: true

 antiAffinity: true

 exposedFeatures:

   - xdcr

 cluster:

   dataServiceMemoryQuota: 40000

   indexServiceMemoryQuota: 40000

   searchServiceMemoryQuota: 1000

   eventingServiceMemoryQuota: 1024

   analyticsServiceMemoryQuota: 1024

   indexStorageSetting: memory_optimized

   autoFailoverTimeout: 120

   autoFailoverMaxCount: 3

   autoFailoverOnDataDiskIssues: true

   autoFailoverOnDataDiskIssuesTimePeriod: 120

   autoFailoverServerGroup: false

 buckets:

   - name: default

     type: couchbase

     memoryQuota: 20000

     replicas: 1

     ioPriority: high

     evictionPolicy: fullEviction

     conflictResolution: seqno

     enableFlush: true

     enableIndexReplica: false

 servers:

   - size: 2

     name: data

     services:

       - data

     pod:

       nodeSelector:

         type: kv

       resources:

         limits:

           cpu: 22000m

           memory: 48Gi

         requests:

          cpu: 22000m

          memory: 48Gi

   - size: 2

     name: qi

     services:

       - index

       - query

     pod:

       nodeSelector:

         type: kv

       resources:

         limits:

           cpu: 22000m

           memory: 48Gi

         requests:

           cpu: 22000m

           memory: 48Gi

My pillowfight-ycsb.yaml file:

apiVersion: batch/v1

kind: Job

metadata:

 name: pillowfight

spec:

 template:

   metadata:

     name: pillowfight

   spec:

     containers:

     - name: pillowfight

       image: sequoiatools/pillowfight:v5.0.1

       command: ["sh", "-c", "tail -f /dev/null"]

     restartPolicy: Never

     nodeSelector:

       type: client

Kubernetes Operator (extension) Couchbase Server Database Docker (software) Throughput (business) Label

Published at DZone with permission of Raju Suravarjjala. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Solving the Kubernetes Security Puzzle
  • What Is API-First?
  • Comparing Map.of() and New HashMap() in Java
  • How To Build a Spring Boot GraalVM Image

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: