Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Performance of PostgreSQL Multi-Field Random Combination Searches

DZone's Guide to

Performance of PostgreSQL Multi-Field Random Combination Searches

Learn more about PostgreSQL optimization and enhanced performance through multi-field random combination searches.

· Performance Zone ·
Free Resource

Sensu is an open source monitoring event pipeline. Try it today.

In one of my previous articles, we looked at the concepts of PostgreSQL optimization using indexes. For PostgreSQL multi-field and random combination searches, there are three optimization techniques:

  1. GIN indexes (supports queries of any field combinations)
  2. Bloom indexes (supports equivalent queries of any read-only combinations)
  3. Every single-column B-tree index (supports queries of any field combinations)

Example

create table test(c1 int, c2 int, c3 int, c4 int, c5 int);  


Methods for Creating Bloom, GIN, and Multiple B-Tree Indexes

1. Bloom

postgres=# create extension bloom ;  
CREATE EXTENSION  
postgres=# create index idx_test12_1 on test12 using bloom (c1,c2,c3,c4,c5);  
CREATE INDEX  
postgres=# explain select * from test12 where c1=1;  
                                 QUERY PLAN                                   
----------------------------------------------------------------------------  
 Bitmap Heap Scan on test12  (cost=13.95..20.32 rows=8 width=20)  
   Recheck Cond: (c1 = 1)  
   ->  Bitmap Index Scan on idx_test12_1  (cost=0.00..13.95 rows=8 width=0)  
         Index Cond: (c1 = 1)  
(4 rows)  
postgres=# explain select * from test12 where c1=1 and c2=1;  
                                 QUERY PLAN                                   
----------------------------------------------------------------------------  
 Bitmap Heap Scan on test12  (cost=18.20..19.42 rows=1 width=20)  
   Recheck Cond: ((c1 = 1) AND (c2 = 1))  
   ->  Bitmap Index Scan on idx_test12_1  (cost=0.00..18.20 rows=1 width=0)  
         Index Cond: ((c1 = 1) AND (c2 = 1))  
(4 rows)  
postgres=# explain select * from test12 where c1=1 or c2=1;  
                                    QUERY PLAN                                      
----------------------------------------------------------------------------------  
 Bitmap Heap Scan on test12  (cost=27.91..38.16 rows=17 width=20)  
   Recheck Cond: ((c1 = 1) OR (c2 = 1))  
   ->  BitmapOr  (cost=27.91..27.91 rows=17 width=0)  
         ->  Bitmap Index Scan on idx_test12_1  (cost=0.00..13.95 rows=8 width=0)  
               Index Cond: (c1 = 1)  
         ->  Bitmap Index Scan on idx_test12_1  (cost=0.00..13.95 rows=8 width=0)  
               Index Cond: (c2 = 1)  
(7 rows)  


2. Gin

postgres=# create extension btree_gin;  
CREATE EXTENSION  
postgres=# create index idx_test12_1 on test12 using gin (c1,c2,c3,c4,c5);  
CREATE INDEX  
postgres=# explain select * from test12 where c1=1 or c2=1;  
                                   QUERY PLAN                                      
---------------------------------------------------------------------------------  
 Bitmap Heap Scan on test12  (cost=4.94..15.19 rows=17 width=20)  
   Recheck Cond: ((c1 = 1) OR (c2 = 1))  
   ->  BitmapOr  (cost=4.94..4.94 rows=17 width=0)  
         ->  Bitmap Index Scan on idx_test12_1  (cost=0.00..2.46 rows=8 width=0)  
               Index Cond: (c1 = 1)  
         ->  Bitmap Index Scan on idx_test12_1  (cost=0.00..2.46 rows=8 width=0)  
               Index Cond: (c2 = 1)  
(7 rows)  

postgres=# explain select * from test12 where c1=1 and c2=1;  
                                QUERY PLAN                                   
---------------------------------------------------------------------------  
 Bitmap Heap Scan on test12  (cost=3.60..4.82 rows=1 width=20)  
   Recheck Cond: ((c1 = 1) AND (c2 = 1))  
   ->  Bitmap Index Scan on idx_test12_1  (cost=0.00..3.60 rows=1 width=0)  
         Index Cond: ((c1 = 1) AND (c2 = 1))  
(4 rows)  


3. Multi-btree

postgres=# drop index idx_test12_1 ;  
DROP INDEX  
postgres=# create index idx_test12_1 on test12 using btree(c1);  
CREATE INDEX  
postgres=# create index idx_test12_2 on test12 using btree(c2);  
CREATE INDEX  
postgres=# create index idx_test12_3 on test12 using btree(c3);  
CREATE INDEX  
postgres=# create index idx_test12_4 on test12 using btree(c4);  
CREATE INDEX  
postgres=# create index idx_test12_5 on test12 using btree(c5);  
CREATE INDEX  

postgres=# explain select * from test12 where c1=1 and c2=1;  
                                   QUERY PLAN                                      
---------------------------------------------------------------------------------  
 Bitmap Heap Scan on test12  (cost=3.08..4.29 rows=1 width=20)  
   Recheck Cond: ((c2 = 1) AND (c1 = 1))  
   ->  BitmapAnd  (cost=3.08..3.08 rows=1 width=0)  
         ->  Bitmap Index Scan on idx_test12_2  (cost=0.00..1.41 rows=8 width=0)  
               Index Cond: (c2 = 1)  
         ->  Bitmap Index Scan on idx_test12_1  (cost=0.00..1.41 rows=8 width=0)  
               Index Cond: (c1 = 1)  
(7 rows)  

postgres=# explain select * from test12 where c1=1 or c2=1;  
                                   QUERY PLAN                                      
---------------------------------------------------------------------------------  
 Bitmap Heap Scan on test12  (cost=2.83..13.09 rows=17 width=20)  
   Recheck Cond: ((c1 = 1) OR (c2 = 1))  
   ->  BitmapOr  (cost=2.83..2.83 rows=17 width=0)  
         ->  Bitmap Index Scan on idx_test12_1  (cost=0.00..1.41 rows=8 width=0)  
               Index Cond: (c1 = 1)  
         ->  Bitmap Index Scan on idx_test12_2  (cost=0.00..1.41 rows=8 width=0)  
               Index Cond: (c2 = 1)  
(7 rows)  


What are the performances of GIN, Bloom, and B-Tree bitmap scan?

Wide Tables With 1600 Columns, Search Performance of Any Field Combinations

1. Create a table

postgres=# do language plpgsql 
$$

declare  
  sql text;  
begin  
  sql := 'create table test1 (';  
  for i in 1..1600 loop  
    sql := sql||' c'||i||' int2 default random()*100,';  
  end loop;  
  sql := rtrim(sql,',');  
  sql := sql||')';  
  execute sql;   

  for i in 1..1600 loop   
    execute 'create index idx_test1_'||i||' on test1 (c'||i||')';   
  end loop;  
end;  

$$
;  
DO  


2. Write test data

postgres=# insert into test1 (c1)  select generate_series(1,10000);  
INSERT 0 10000  


3. Test scripts

vi test.sql  

\set c2 random(1,100)  
\set c3 random(1,100)  
\set c4 random(1,100)  
\set c5 random(1,100)  
\set c6 random(1,100)  
\set c7 random(1,100)  
select c1600 from test1 where c2=:c2 and c3=:c3 and c4=:c4 or (c5=:c5 and c6=:c6 and c7=:c7);  


4. Testing

pgbench -M prepared -n -r -P 1 -f ./test.sql -c 64 -j 64 -T 120  


5. Performance

progress: 33.0 s, 208797.8 tps, lat 0.307 ms stddev 0.016  
progress: 34.0 s, 208516.0 tps, lat 0.307 ms stddev 0.032  
progress: 35.0 s, 208574.0 tps, lat 0.307 ms stddev 0.050  
progress: 36.0 s, 208858.2 tps, lat 0.306 ms stddev 0.013  
progress: 37.0 s, 208686.8 tps, lat 0.307 ms stddev 0.043  
progress: 38.0 s, 208764.2 tps, lat 0.307 ms stddev 0.013  


Note: Using prepared statements can reduce hard parsing and improve performance.

Based on the test, searches of any fields can achieve a response time of 0.3 milliseconds.

Sensu: workflow automation for monitoring. Learn more—download the whitepaper.

Topics:
postgresql ,server ,performance ,database ,index ,multi-field ,random combination searches

Published at DZone with permission of

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}