DZone
Big Data Zone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
  • Refcardz
  • Trend Reports
  • Webinars
  • Zones
  • |
    • Agile
    • AI
    • Big Data
    • Cloud
    • Database
    • DevOps
    • Integration
    • IoT
    • Java
    • Microservices
    • Open Source
    • Performance
    • Security
    • Web Dev
DZone > Big Data Zone > Playing with Continued Fractions and Khinchin's Constant

Playing with Continued Fractions and Khinchin's Constant

John Cook user avatar by
John Cook
·
Feb. 28, 15 · Big Data Zone · Interview
Like (1)
Save
Tweet
6.83K Views

Join the DZone community and get the full member experience.

Join For Free

Take a real number x and expand it as a continued fraction. Compute the geometric mean of the first n coefficients.

Aleksandr Khinchin proved that for almost all real numbers x, as n → ∞ the geometric means converge. Not only that, they converge to the same constant, known as Khinchin’s constant, 2.685452001…. (“Almost all” here mean in the sense of measure theory: the set of real numbers that are exceptions to Khinchin’s theorem have measure zero.)

To get an idea how fast this convergence is, let’s start by looking at the continued fraction expansion of π. In Sage, we can type

continued_fraction(RealField(100)(pi))

to get the continued fraction coefficient

[3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3]

for π to 100 decimal places. The geometric mean of these coefficients is 2.84777288486, which only matches Khinchin’s constant to 1 significant figure.

Let’s try choosing random numbers and working with more decimal places.

There may be a more direct way to find geometric means in Sage, but here’s a function I wrote. It leaves off any leading zeros that would cause the geometric mean to be zero.

from numpy import exp, mean, log
def geometric_mean(x):
    return exp( mean([log(k) for k in x if k > 0]) )

Now let’s find 10 random numbers to 1,000 decimal places.

for _ in range(10):
    r = RealField(1000).random_element(0,1)
    print(geometric_mean(continued_fraction(r)))

This produced

2.66169890535
2.62280675227
2.61146463641
2.58515620064
2.58396664032
2.78152297661
2.55950338205
2.86878898900
2.70852612496
2.52689450535

Three of these agree with Khinchin’s constant to two significant figures but the rest agree only to one. Apparently the convergence is very slow.

If we go back to π, this time looking out 10,000 decimal places, we get a little closer:

print(geometric_mean(continued_fraction(RealField(10000)(pi))))
produces 2.67104567579, which differs from Khinchin’s constant by about 0.5%
Measure (physics) Theorem

Published at DZone with permission of John Cook, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • The Engineer’s Guide to Creating a Technical Debt Proposal
  • Take Control of Your Application Security
  • Unit Vs Integration Testing: What's the Difference?
  • APIs Outside, Events Inside

Comments

Big Data Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • MVB Program
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends:

DZone.com is powered by 

AnswerHub logo