Platinum Partner
architects,opinion,bigdata,mysql,hadoop,activemq,mongodb,cassandra,riak,zeromq,big data

Presentation: Scalability Challenges in Big Data Science

Scalability Challenges in Big Data Science

Yesterday I gave a talk on scalability and machine learning at the BerlinBuzzword conference. I give an overview of different ways to scale data analysis and machine learning methods. I cover MapReduce (of course), large scale training of SVMs via stochastic gradient descent, but also stream mining, and real-time (as you know, “you don’t just scale into real-time”).

The conference continues today, follow the conference on Twitter on the #bbuzz hashtag.

Update: On scribd, the hyperlinks are somehow lost, so here is the list:

Scalable Databases

Multithreadding and Messaging Frameworks

MapReduce

Large Scale Classifier Training

Other frameworks

Stream processing

TWIMPACT:

 

Published at DZone with permission of {{ articles[0].authors[0].realName }}, DZone MVB. (source)

Opinions expressed by DZone contributors are their own.

{{ tag }}, {{tag}},

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}
{{ parent.authors[0].realName || parent.author}}

{{ parent.authors[0].tagline || parent.tagline }}

{{ parent.views }} ViewsClicks
Tweet

{{parent.nComments}}