DZone
Web Dev Zone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
  • Refcardz
  • Trend Reports
  • Webinars
  • Zones
  • |
    • Agile
    • AI
    • Big Data
    • Cloud
    • Database
    • DevOps
    • Integration
    • IoT
    • Java
    • Microservices
    • Open Source
    • Performance
    • Security
    • Web Dev
DZone > Web Dev Zone > Python: Find the Highest Value in a Group

Python: Find the Highest Value in a Group

Mark Needham user avatar by
Mark Needham
·
Feb. 09, 15 · Web Dev Zone · Interview
Like (0)
Save
Tweet
9.53K Views

Join the DZone community and get the full member experience.

Join For Free

In my continued playing around with a "How I Met Your Mother" data set I needed to find out the last episode that happened in a season so that I could use it in a chart I wanted to plot.

I had this CSV file containing each of the episodes:

$ head -n 10 data/import/episodes.csv
NumberOverall,NumberInSeason,Episode,Season,DateAired,Timestamp
1,1,/wiki/Pilot,1,"September 19, 2005",1127084400
2,2,/wiki/Purple_Giraffe,1,"September 26, 2005",1127689200
3,3,/wiki/Sweet_Taste_of_Liberty,1,"October 3, 2005",1128294000
4,4,/wiki/Return_of_the_Shirt,1,"October 10, 2005",1128898800
5,5,/wiki/Okay_Awesome,1,"October 17, 2005",1129503600
6,6,/wiki/Slutty_Pumpkin,1,"October 24, 2005",1130108400
7,7,/wiki/Matchmaker,1,"November 7, 2005",1131321600
8,8,/wiki/The_Duel,1,"November 14, 2005",1131926400
9,9,/wiki/Belly_Full_of_Turkey,1,"November 21, 2005",1132531200

I started out by parsing the CSV file into a dictionary of (seasons -> episode ids):

import csv
from collections import defaultdict
 
seasons = defaultdict(list)
with open("data/import/episodes.csv", "r") as episodesfile:
    reader = csv.reader(episodesfile, delimiter = ",")
    reader.next()
    for row in reader:
        seasons[int(row[3])].append(int(row[0]))
 
print seasons

which outputs the following:

$ python blog.py
defaultdict(<type 'list'>, {
  1: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], 
  2: [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44], 
  3: [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64], 
  4: [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88], 
  5: [89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112], 
  6: [113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136], 
  7: [137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160], 
  8: [161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184], 
  9: [185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208]})

It’s reasonably easy to transform that into a dictionary of (season -> max episode id) with the following couple of lines:

for season, episode_ids in seasons.iteritems():
    seasons[season] = max(episode_ids)
 
>>> print seasons
defaultdict(<type 'list'>, {1: 22, 2: 44, 3: 64, 4: 88, 5: 112, 6: 136, 7: 160, 8: 184, 9: 208})

This works fine but it felt very much like a dplyr problem to me so I wanted to see whether I could write something cleaner using pandas.

I started out by capturing the seasons and episode ids in separate lists and then building up a DataFrame:

import pandas as pd
from pandas import DataFrame
 
seasons, episode_ids = [], []
with open("data/import/episodes.csv", "r") as episodesfile:
    reader = csv.reader(episodesfile, delimiter = ",")
    reader.next()
    for row in reader:
        seasons.append(int(row[3]))
        episode_ids.append(int(row[0]))
 
df = DataFrame.from_items([('Season', seasons), ('EpisodeId', episode_ids)])
 
>>> print df.groupby("Season").max()["EpisodeId"]
Season
1          22
2          44
3          64
4          88
5         112
6         136
7         160
8         184
9         208

Or we can simplify that and read the CSV file directly into a DataFrame:

df = pd.read_csv('data/import/episodes.csv', index_col=False, header=0)
 
>>> print df.groupby("Season").max()["NumberOverall"]
Season
1          22
2          44
3          64
4          88
5         112
6         136
7         160
8         184
9         208

Pretty neat. I need to get more into pandas.

Python (language) Data set CSV Pandas Dictionary (software) Data (computing) Dplyr

Published at DZone with permission of Mark Needham, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • What Is Cloud-Native Architecture?
  • Real-Time Supply Chain With Apache Kafka in the Food and Retail Industry
  • Create a Self-Service Customer Support Chatbot Without Code
  • A First Look at CSS When and Else Statements

Comments

Web Dev Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • MVB Program
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends:

DZone.com is powered by 

AnswerHub logo