Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

Quicksort Operation Count and Prime Numbers

DZone's Guide to

Quicksort Operation Count and Prime Numbers

We all know about quicksort, but is it possible that its performance is tied to prime numbers? Come find out as we dig into this little question.

· Performance Zone
Free Resource

Transform incident management with machine learning and analytics to help you maintain optimal performance and availability while keeping pace with the growing demands of digital business with this eBook, brought to you in partnership with BMC.

The average number of operations needed for quicksort to sort a list of n items is approximately 10 times the nth prime number.

Here’s some data to illustrate this:

|------+-----------------+---------|
|    n | avg. operations | 10*p(n) |
|------+-----------------+---------|
|  100 |          5200.2 |    5410 |
|  200 |         12018.3 |   12230 |
|  300 |         19446.9 |   19870 |
|  400 |         27272.2 |   27410 |
|  500 |         35392.2 |   35710 |
|  600 |         43747.3 |   44090 |
|  700 |         52297.8 |   52790 |
|  800 |         61015.5 |   61330 |
|  900 |         69879.6 |   69970 |
| 1000 |         78873.5 |   79190 |
| 1100 |         87984.4 |   88310 |
| 1200 |         97201.4 |   97330 |
| 1300 |        106515.9 |  106570 |
| 1400 |        115920.2 |  116570 |
| 1500 |        125407.9 |  125530 |
| 1600 |        134973.5 |  134990 |
| 1700 |        144612.1 |  145190 |
| 1800 |        154319.4 |  154010 |
| 1900 |        164091.5 |  163810 |
| 2000 |        173925.1 |  173890 |
|------+-----------------+---------|

The maximum difference between the quicksort and prime columns is about 4%. In the latter half of the table, the maximum error is about 0.4%.

What’s going on here? Why should quicksort be related to prime numbers?!

The real mystery is the prime number theorem, not quicksort. The prime number theorem tells us that the nth prime number is approximately n log n. And the number of operations in an efficient sort is proportional to n log n. The latter is easier to see than the former.

A lot of algorithms have run-time proportional to n log n: mergesort, heapsort, FFT (Fast Fourier Transform), etc. All these have run time approximately proportional to the nth prime.

Now for the fine print. What exactly is the average run time for quicksort? It’s easy to say it’s O(n log n), but getting more specific requires making assumptions. I used as the average number of operations 11.67 n log n – 1.74 n based on Knuth’s TAOCP, Volume 3. And why 10 times the nth prime and not 11.67? I chose 10 to make the example work better. For very large values on n, a larger coefficient would work better.

Evolve your approach to Application Performance Monitoring by adopting five best practices that are outlined and explored in this e-book, brought to you in partnership with BMC.

Topics:
quicksort ,performance

Published at DZone with permission of John Cook, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

THE DZONE NEWSLETTER

Dev Resources & Solutions Straight to Your Inbox

Thanks for subscribing!

Awesome! Check your inbox to verify your email so you can start receiving the latest in tech news and resources.

X

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}