DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports Events Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
  1. DZone
  2. Data Engineering
  3. Data
  4. R: Applying a Function to Every Row of a Data Frame

R: Applying a Function to Every Row of a Data Frame

Mark Needham user avatar by
Mark Needham
·
Dec. 26, 14 · Interview
Like (1)
Save
Tweet
Share
12.95K Views

Join the DZone community and get the full member experience.

Join For Free

In my continued exploration of London’s meetups I wanted to calculate the distance from meetup venues to a centre point in London.

I’ve created a gist containing the coordinates of some of the venues that host NoSQL meetups in London town if you want to follow along:

library(dplyr)
 
# https://gist.github.com/mneedham/7e926a213bf76febf5ed
venues = read.csv("/tmp/venues.csv")
 
venues %>% head()
##                        venue      lat       lon
## 1              Skills Matter 51.52482 -0.099109
## 2                   Skinkers 51.50492 -0.083870
## 3          Theodore Bullfrog 51.50878 -0.123749
## 4 The Skills Matter eXchange 51.52452 -0.099231
## 5               The Guardian 51.53373 -0.122340
## 6            White Bear Yard 51.52227 -0.109804

Now to do the calculation. I’ve chosen the Centre Point building in Tottenham Court Road as our centre point. We can use the distHaversine function in the geosphere library allows us to do the calculation:

options("scipen"=100, "digits"=4)
library(geosphere)
 
centre = c(-0.129581, 51.516578)
aVenue = venues %>% slice(1)
aVenue
##           venue   lat      lon
## 1 Skills Matter 51.52 -0.09911

Now we can calculate the distance from Skillsmatter to our centre point:

distHaversine(c(aVenue$lon, aVenue$lat), centre)
## [1] 2302

That works pretty well so now we want to apply it to every row in the venues data frame and add an extra column containing that value.

This was my first attempt…

venues %>% mutate(distHaversine(c(lon,lat),centre))
## Error in .pointsToMatrix(p1): Wrong length for a vector, should be 2

…which didn’t work quite as I’d imagined!

I eventually found my way to the by function which allows you to ‘apply a function to a data frame split by factors’. In this case I wouldn’t be grouping rows by a factor – I’d apply the function to each row separately.

I wired everything up like so:

distanceFromCentre = by(venues, 1:nrow(venues), function(row) { distHaversine(c(row$lon, row$lat), centre)  })
 
distanceFromCentre %>% head()
## 1:nrow(venues)
##      1      2      3      4      5      6 
## 2301.6 3422.6  957.5 2280.6 1974.1 1509.5

We can now add the distances to our venues data frame:

venuesWithCentre = venues %>% 
  mutate(distanceFromCentre = by(venues, 1:nrow(venues), function(row) { distHaversine(c(row$lon, row$lat), centre)  }))
 
venuesWithCentre %>% head()
##                        venue   lat      lon distanceFromCentre
## 1              Skills Matter 51.52 -0.09911             2301.6
## 2                   Skinkers 51.50 -0.08387             3422.6
## 3          Theodore Bullfrog 51.51 -0.12375              957.5
## 4 The Skills Matter eXchange 51.52 -0.09923             2280.6
## 5               The Guardian 51.53 -0.12234             1974.1
## 6            White Bear Yard 51.52 -0.10980             1509.5

Et voila!

R (programming language) Data (computing) Row (database) Frame (networking)

Published at DZone with permission of Mark Needham, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Popular on DZone

  • Public Cloud-to-Cloud Repatriation Trend
  • Project Hygiene
  • The Role of Data Governance in Data Strategy: Part II
  • Exploring the Benefits of Cloud Computing: From IaaS, PaaS, SaaS to Google Cloud, AWS, and Microsoft

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 600 Park Offices Drive
  • Suite 300
  • Durham, NC 27709
  • support@dzone.com
  • +1 (919) 678-0300

Let's be friends: