DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports
Events Video Library
Over 2 million developers have joined DZone. Join Today! Thanks for visiting DZone today,
Edit Profile Manage Email Subscriptions Moderation Admin Console How to Post to DZone Article Submission Guidelines
View Profile
Sign Out
Refcards
Trend Reports
Events
View Events Video Library
Zones
Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

Integrating PostgreSQL Databases with ANF: Join this workshop to learn how to create a PostgreSQL server using Instaclustr’s managed service

Mobile Database Essentials: Assess data needs, storage requirements, and more when leveraging databases for cloud and edge applications.

Monitoring and Observability for LLMs: Datadog and Google Cloud discuss how to achieve optimal AI model performance.

Automated Testing: The latest on architecture, TDD, and the benefits of AI and low-code tools.

Related

  • Tips and Tricks for Efficient Coding in R
  • How to Get a Non-Programmer Started with R
  • Python vs. R: A Comparison of Machine Learning in the Medical Industry
  • How to Rectify R Package Error in Android Studio

Trending

  • Four Ways for Developers To Limit Liability as Software Liability Laws Seem Poised for Change
  • Getting Started With Prometheus Workshop: Instrumenting Applications
  • DevSecOps: Integrating Security Into Your DevOps Workflow
  • Docker and Kubernetes Transforming Modern Deployment
  1. DZone
  2. Coding
  3. Languages
  4. R: dplyr - group_by dynamic or programmatic field

R: dplyr - group_by dynamic or programmatic field

Mark Needham user avatar by
Mark Needham
·
Sep. 04, 14 · Interview
Like (0)
Save
Tweet
Share
9.24K Views

Join the DZone community and get the full member experience.

Join For Free

In my last blog post I showed how to group timestamp based data by week, month and quarter and by the end we had the following code samples using dplyr and zoo:

library(RNeo4j)
library(zoo)
 
timestampToDate <- function(x) as.POSIXct(x / 1000, origin="1970-01-01", tz = "GMT")
 
query = "MATCH (:Person)-[:HAS_MEETUP_PROFILE]->()-[:HAS_MEMBERSHIP]->(membership)-[:OF_GROUP]->(g:Group {name: \"Neo4j - London User Group\"})
         RETURN membership.joined AS joinTimestamp"
meetupMembers = cypher(graph, query)
 
meetupMembers$joinDate <- timestampToDate(meetupMembers$joinTimestamp)
meetupMembers$monthYear <- as.Date(as.yearmon(meetupMembers$joinDate))
meetupMembers$quarterYear <- as.Date(as.yearqtr(meetupMembers$joinDate))
 
meetupMembers %.% group_by(week) %.% summarise(n = n())
meetupMembers %.% group_by(monthYear) %.% summarise(n = n())
meetupMembers %.% group_by(quarterYear) %.% summarise(n = n())

As you can see there’s quite a bit of duplication going on – the only thing that changes in the last 3 lines is the name of the field that we want to group by.

I wanted to pull this code out into a function and my first attempt was this:

groupMembersBy = function(field) {
  meetupMembers %.% group_by(field) %.% summarise(n = n())
}

And now if we try to group by week:

> groupMembersBy("week")
 Show Traceback
 
 Rerun with Debug
 Error: index out of bounds

It turns out if we want to do this then we actually want the regroup function rather than group_by:

groupMembersBy = function(field) {
  meetupMembers %.% regroup(list(field)) %.% summarise(n = n())
}

And now if we group by week:

> head(groupMembersBy("week"), 20)
Source: local data frame [20 x 2]
 
         week n
1  2011-06-02 8
2  2011-06-09 4
3  2011-06-16 1
4  2011-06-30 2
5  2011-07-14 1
6  2011-07-21 1
7  2011-08-18 1
8  2011-10-13 1
9  2011-11-24 2
10 2012-01-05 1
11 2012-01-12 3
12 2012-02-09 1
13 2012-02-16 2
14 2012-02-23 4
15 2012-03-01 2
16 2012-03-08 3
17 2012-03-15 5
18 2012-03-29 1
19 2012-04-05 2
20 2012-04-19 1

Much better!

R (programming language) Dplyr

Published at DZone with permission of Mark Needham, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Related

  • Tips and Tricks for Efficient Coding in R
  • How to Get a Non-Programmer Started with R
  • Python vs. R: A Comparison of Machine Learning in the Medical Industry
  • How to Rectify R Package Error in Android Studio

Comments

Partner Resources

X

ABOUT US

  • About DZone
  • Send feedback
  • Careers
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • support@dzone.com

Let's be friends: