Over a million developers have joined DZone.
{{announcement.body}}
{{announcement.title}}

R: ggplot - Cumulative frequency graphs

DZone's Guide to

R: ggplot - Cumulative frequency graphs

· Big Data Zone ·
Free Resource

Hortonworks Sandbox for HDP and HDF is your chance to get started on learning, developing, testing and trying out new features. Each download comes preconfigured with interactive tutorials, sample data and developments from the Apache community.

In my continued playing around with ggplot I wanted to create a chart showing the cumulative growth of the number of members of the Neo4j London meetup group.

My initial data frame looked like this:

> head(meetupMembers)
  joinTimestamp            joinDate  monthYear quarterYear       week dayMonthYear
1  1.376572e+12 2013-08-15 13:13:40 2013-08-01  2013-07-01 2013-08-15   2013-08-15
2  1.379491e+12 2013-09-18 07:55:11 2013-09-01  2013-07-01 2013-09-12   2013-09-18
3  1.349454e+12 2012-10-05 16:28:04 2012-10-01  2012-10-01 2012-10-04   2012-10-05
4  1.383127e+12 2013-10-30 09:59:03 2013-10-01  2013-10-01 2013-10-24   2013-10-30
5  1.372239e+12 2013-06-26 09:27:40 2013-06-01  2013-04-01 2013-06-20   2013-06-26
6  1.330295e+12 2012-02-26 22:27:00 2012-02-01  2012-01-01 2012-02-23   2012-02-26

The first step was to transform the data so that I had a data frame where a row represented a day where a member joined the group. There would then be a count of how many members joined on that date.

We can do this with dplyr like so:

library(dplyr)
> head(meetupMembers %.% group_by(dayMonthYear) %.% summarise(n = n()))
Source: local data frame [6 x 2]
 
  dayMonthYear n
1   2011-06-05 7
2   2011-06-07 1
3   2011-06-10 1
4   2011-06-12 1
5   2011-06-13 1
6   2011-06-15 1

To turn that into a chart we can plug it into ggplot and use the cumsum function to generate a line showing the cumulative total:

ggplot(data = meetupMembers %.% group_by(dayMonthYear) %.% summarise(n = n()), 
       aes(x = dayMonthYear, y = n)) + 
  ylab("Number of members") +
  xlab("Date") +
  geom_line(aes(y = cumsum(n)))
2014 08 31 22 58 42

Alternatively we could bring the call to cumsum forward and generate a data frame which has the cumulative total:

> head(meetupMembers %.% group_by(dayMonthYear) %.% summarise(n = n()) %.% mutate(n = cumsum(n)))
Source: local data frame [6 x 2]
 
  dayMonthYear  n
1   2011-06-05  7
2   2011-06-07  8
3   2011-06-10  9
4   2011-06-12 10
5   2011-06-13 11
6   2011-06-15 12

And if we plug that into ggplot we’ll get the same curve as before:

ggplot(data = meetupMembers %.% group_by(dayMonthYear) %.% summarise(n = n()) %.% mutate(n = cumsum(n)), 
       aes(x = dayMonthYear, y = n)) + 
  ylab("Number of members") +
  xlab("Date") +
  geom_line()

If we want the curve to be a bit smoother we can group it by quarter rather than by day:

> head(meetupMembers %.% group_by(quarterYear) %.% summarise(n = n()) %.% mutate(n = cumsum(n)))
Source: local data frame [6 x 2]
 
  quarterYear   n
1  2011-04-01  13
2  2011-07-01  18
3  2011-10-01  21
4  2012-01-01  43
5  2012-04-01  60
6  2012-07-01 122

Now let’s plug that into ggplot:

ggplot(data = meetupMembers %.% group_by(quarterYear) %.% summarise(n = n()) %.% mutate(n = cumsum(n)), 
       aes(x = quarterYear, y = n)) + 
    ylab("Number of members") +
    xlab("Date") +
    geom_line()
2014 08 31 23 08 24


Hortonworks Community Connection (HCC) is an online collaboration destination for developers, DevOps, customers and partners to get answers to questions, collaborate on technical articles and share code examples from GitHub.  Join the discussion.

Topics:

Published at DZone with permission of

Opinions expressed by DZone contributors are their own.

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}