Over a million developers have joined DZone.

R: Refactoring to dplyr

· Big Data Zone

Learn how you can maximize big data in the cloud with Apache Hadoop. Download this eBook now. Brought to you in partnership with Hortonworks.

I’ve been looking back over some of the early code I wrote using R before I knew about the dplyr library and thought it’d be an interesting exercise to refactor some of the snippets.

We’ll use the following data frame for each of the examples:

library(dplyr)
 
data = data.frame(
  letter = sample(LETTERS, 50000, replace = TRUE),
  number = sample (1:10, 50000, replace = TRUE)
  )

Take {n} rows

> data[1:5,]
  letter number
1      R      7
2      Q      3
3      B      8
4      R      3
5      U      2

becomes:

> data %>% head(5)
  letter number
1      R      7
2      Q      3
3      B      8
4      R      3
5      U      2

Order by numeric value descending

> data[order(-(data$number)),][1:5,]
   letter number
14      H     10
17      G     10
63      L     10
66      W     10
73      R     10

becomes:

> data %>% arrange(desc(number)) %>% head(5)
  letter number
1      H     10
2      G     10
3      L     10
4      W     10
5      R     10

Count number of items

> length(data[,1])
[1] 50000

becomes:

> data %>% count()
Source: local data frame [1 x 1]
 
      n
1 50000

Filter by column value

> length(subset(data, number == 1)[, 1])
[1] 4928

becomes:

> data %>% filter(number == 1) %>% count()
Source: local data frame [1 x 1]
 
     n
1 4928

Group by variable and count

> aggregate(data, by= list(data$number), function(x) length(x))
   Group.1 letter number
1        1   4928   4928
2        2   5045   5045
3        3   5064   5064
4        4   4823   4823
5        5   5032   5032
6        6   5163   5163
7        7   4945   4945
8        8   5077   5077
9        9   5025   5025
10      10   4898   4898

becomes:

> data %>% count(number)
Source: local data frame [10 x 2]
 
   number    n
1       1 4928
2       2 5045
3       3 5064
4       4 4823
5       5 5032
6       6 5163
7       7 4945
8       8 5077
9       9 5025
10     10 4898

Select a range of rows

> data[4:5,]
  letter number
4      R      3
5      U      2

becomes:

> data %>% slice(4:5)
  letter number
1      R      3
2      U      2

There’s certainly more code in some of the dplyr examples but I find it easier to remember how the dplyr code works when I come back to it and hence tend to favour that approach.

Hortonworks DataFlow is an integrated platform that makes data ingestion fast, easy, and secure. Download the white paper now.  Brought to you in partnership with Hortonworks

Topics:

Published at DZone with permission of Mark Needham, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

The best of DZone straight to your inbox.

SEE AN EXAMPLE
Please provide a valid email address.

Thanks for subscribing!

Awesome! Check your inbox to verify your email so you can start receiving the latest in tech news and resources.
Subscribe

{{ parent.title || parent.header.title}}

{{ parent.tldr }}

{{ parent.urlSource.name }}